Programming - User Support

I

Applications

ISSN # 0748-3331

Issue Number 49 March / April 1991

Computer Network Power Protection

Floppy Disk Alignment with the RTXEB and Forth

Motor Control with the F68HC11

Controlling Home Heating and Lighting

Getting Started in Assembly Language

Real Computing
LAN Basics
Z-System Corner
PMATE/ZMATE Macros
Z-Best Software

The Computer Corner

US$3.95




Now $4.” Stops The Clock
On Over

100 GEnie Services

For the first time ever, enjoy
unlimited non-prime time* usage of
many popular GEnie®™M Service fea-
tures. For just $4.95 a month.
Choose from over 100 valuable serv-
ices including everything from elec-
tronic mail and stock closings to ex-
citing games and bulletin boards.
Nobody else gives you so much for
so little.

You can also enjoy access to a
wide variety of features like software
libraries, computer bulletin boards,
multi-player games, Newsbytes, and
the Computer Assisted Learning
Center (CALC) for just $6.00 per
non-prime hour for all baud rates
including 2400. That's less than
half of what some other services
charge. Plus with GEnie there’s no

TCJ readers are invited to join us in the CP/M
SIG on page 685 and the Forth Interest Group
SIG on page 710. Meet the authors and editors
of The Computer Journal! Enter “M 710" to join
the FIG group and “M 685" to join the CP/M and

Z-System group.

We'll meet you there!

sign-up fee.

Now GEnie not only gives you
the information and fun you're look-
ing for. But the time to enjoy them,
too.

Follow these simple steps.

1. Set your modem for half duplex
(local echo), at 300, 1200 or 2400
baud.

2. Dial toll free 1-800-638-8369.
Upon connection, enter HHH.

3. At the U#=prompt, enter
XTX99486,GENIE then press RE-
TURN

4. Have a major credit card or your
checking account number ready.

For more information in the
U.S. or Canada, call us voice at
1-800-638-9636.

7

JUST $4.95 )

Moneyback
Guarantee

Sign up now. If you're
not satisfied after using
GEnie for one month

@'ll refund your $4.95.J

*Applies only in U.S. Mon.-Fri., 8PM-8AM local time and all day Sat., Sun., and select holidays. Prime time hourly rates $18 up to 2400 baud. Some features subject to surcharge and may not be
available outside U.S. Prices and products listed as of Oct.1, 1890 subject to change. Telecommunications surcharges may apply. Guarantee limited to one per customer and applies only to first
month of use, GE Information Services, GEnie, 401 N. Washington Street, Rockville, MD 20850. © 1991 General Electric Company.



The Computer Journal

Founder
Art Carlson

Editor/Publisher
Chris McEwen

Technical Consultant
William P. Woodall

Contributing Editors
Bill Kibler
Tim McDonough
Bridger Mitcheli
Clem Pepper
Richard Rodman
Jay Sage

The Computer Journal is pub-
lished six times a year by Socrates
Press, P.O. Box 12, S. Plainfield, NJ
07080. (908) 755-6186

Opinions expressed in The Com-
puter Journal are those of the re-
spective authors and do not neces-
sarily reflect those of the editorial
staff or publisher.

Entire contents copyright © 1991
by The Computer Journal and re-
spective authors. All rights reserved.
Reproduction in any form prohibited
without express written permission of
the publisher.

Subscription ratese Within US:
$18 one year (6 issues), $32 two
years (12 issues). Foreign (surface
rate): $24 one year, $44 two years.
Foreign (airmail): $38 one year, $72
two years. All funds must be in U.S.
dollars drawn on a U.S. bank.

Send subscription, renewals, ad-
dress changes, or advertising in-
quires to: The Computer Journal,
P.0. Box 12, S. Plainfield, NJ 07080,
telephone (908) 755-6186.

Registered Trademarks

It is easy to get in the habit of using company
trademarks as generic terms, but these trademarks are
the property of the respective companies. It is important
to acknowledge these trademarks as their property to
avoid their losing the rights and the term becoming pub-
lic property. The following frequently used trademarks
are acknowledged, and we apologize for any we have
overlooked.

Apple Il, I+, llc, lle, Lisa, Macintosh, DOS 3.3,
ProDos; Apple Computer Company, CP/M, DDT, ASM,
STAT, PIP; Digtal Research. DateStamper, Back-
Grounder i, Dos Disk; Plu*Perfect Systems. Clipper,
Nantucket; Nantucket, inc. dBase, dBASE Il, dBASE I,
dBASE |ll Plus, dBASE |V; Ashton-Tate, Inc. MBASIC,
MS-DOS, Windows, Word; MicroSoft. WordStar; Micro-
Pro International. IBM-PC, XT, and AT, PC-DOS; IBM
Corporation. Z80, Z280; Zilog Corporation. Turbo Pas-
cal, Turbo C, Paradox; Borland International. HD84180;
Hitachi America, Ltd. $8180; Micromint, Inc.

Where these and other terms are used in The
Computer Journal, they are acknowledged to be the
property of the respective companies even if not spe-
cifically acknowledged in each occurrence.

The COMPUTER
JOURNAL

Issue Number 49 March / April 1991

Editorial ................. S erenrenns T creenaes creeseernares 2

Computer Network Power Protection ...................... 3
Problems, Myths and Solutions
By Wendell H. Laidley.

Floppy Disk Alignment with the RTXEB and Forth 7
Part One
By Frank C. Sergeant.

Motor Control with the F68HC11 ............eeeenrrnnnn. 13
By Matt Mercaldo.

Controlling Home Heating and Lighting ................ 17
A Personal Embedded Controller System
By Jay Sage.

Getting Started in Assembly Language ................ 19

Making the Jump from High Level Languages
By A. E. Hawley.

Real Computing...........ccccceeceernnee ceeeriaas T —1

The PC-532, Minix 1.5 and the 32GX320
By Richard Rodman.

LAN BasiCS.....ccoceeiimreceerrccrrcnnriescs e e sse s e s 23
By Wayne Sung.

Z-System Corner ...........cccccevveereeervennssnsssenesens . 25

Putting the NZCOM Virtual BIOS to Work
By Jay Sage.

PMATE/ZMATE MACIOS ..cc...veeeeeeeemmeeeeeereeeesessssssseeeees 29

Part Two: Terminology and Utilitiy Subroutines
By Clif Kinne.

Z-Best Software ..........cccveeecrrrivirecrcnnirnceene, e 33
Birth of a New Program
By Bill Tishey.

The Computer Corner ...... e 44
By Bill Kibler.



Editorial

By Chris McEwen

Ah, where to begin? It has been a busy two months since
the last issue. I have received notes and calls from all over
complimenting us on the transition. Thank you all. If | owe
you a letter, please bear with me. It will take a while to put
everything in its place and calm things down. To add to mat-
ters, | was recently informed that I have been assigned to a
project team to revamp the MIS program company wide
where I work. Nothing like a new job to add to the confu-
sion!

There is one thing we seem to lack here at TCJ. There is
no place for letters from readers. Since I believe the job of the
editor is that of guiding the audiences’ attention from one
attraction to the next, rather than being an attraction himself,
there wouldn’t be much purpose in a Letters-to-the-Editor col-
umn. Instead, we will call it Reader-to-Reader. That has a nice
ring to it and it fairly represents the involvement subscribers
have in our directions here. Feel free to drop us a line. Mark
the envelope as “Attention: Reader-to-Reader.”

Practice What You Preach

When people I know get computers and ask for help, the
first thing I teach them is that there is nothing more impor-
tant than backing up your system on a regular basis. I prac-
tice this regularly on my bbs; every Saturday morning is de-
voted to a ritual of backing up the message system. The lack
of a good CP/M backup system keeps me from doing the
whole machine every week. Or should I say, what I thought
was a lack of a good system. In calling around the country, I
found that Roger Warren, sysop of Z-Node 9 in San Diego,
not only has devised a scheme but he has gone so far as to
modify the BIOS of his Ampro to speed the task by relocating
the directory tracks to the center of the floppy disk! Now,
that is getting serious. We will be hearing from Roger on this
scheme in the near future.

There is a more immediate reason I bring this topic up. I
found myself sitting at a dead MS-DOS machine the other
week. The beast ([ call her Amanda at better moments) had
held all the files for this issue just moments before. And then,
right at deadline, she decided to blow her file allocation
tables. From all we can put together, she took a power surge.
No problem for a fellow who preaches regular backups,
right? Uh, right. Well, this preacher is out looking for a tape
drive. This will happen just once.

The irony of this is that our lead article this issue regards
power protection. This is timely, with the spring thunder
storms coming along. Wendell Laidley questions whether to-
day’s devices might not divert the surge to the delicate data
lines through ground. Interesting. Were this to have hap-
pened, I would not have lost the FAT, I would have lost the
machine! Continuing on, he tells us that MOVs break down
in service but fail to give warning. Very nice. The surge pro-

tector | have Amanda hooked up to is ten years old. It was
the finest I could buy back then, and I certainly didn’t see the
need to throw it out. Perhaps 1 should think again.

By the way, I asked one of the major manufacturers of
powerline protection devices if they would want to submit
something to counter Wendell’s position. They declined.
Since this is an important topic, I open the door to other
perspectives.

Gotta Get a Fix!

Had some correspondence asking where one can go to get
CP/M gear fixed. This is becoming more of a problem. The
systems we use are getting up in years and there seems to be
fewer people who know their way around them. If you are
involved in repair of such equipment, let us know. But there
are bright spots as well. As you know, Advent stopped sell-
ing the TurboROM a while back. That was a crushing blow--
there is no single improvement a Kaypro owner can make
more important than putting in this ROM. Then, out of the
blue, a message was passed around the Z-Nodes. Seems
Chuck Stafford has obtained the rights to the ROM and has it
back in production. Better yet, the price has dropped to $35.
You can call Chuck at his home. The number is (916) 483-
0312. Or drop him a line at 4000 Norris Avenue, Sacramento,
CA 95821.

We’'re All Connected

Big news! A couple of special places have been established
on GEnie for TCJ readers. One, in the Forth SIG (page 710),
seems to have been there for a couple of years. It was put up
by readers. Art didn't know it was there! I discovered it by
accident one afternoon while exploring the system. And the
CP/M sysop, Bill Juliani, has established a TCJ SIG in his
area. This is category 15 on page 685. I am moderating and
you are cordially invited. I promise that I will make regular
visits to the Forth area as well. Meanwhile, if you are not a
GEnie subscriber, you might want to look at their advertise-
ment on the inside front cover. I printed out their index of
services in fine print one afternoon and it took some six
pages. More to the point, both the Forth Interest Group (FIG)
and the most active CP/M group of all the major services live
on this system.

Speaking of being all connected, we can look forward to
several articles in future issues on Fido-Net and usenet. Mark
Burrow of Houston, Texas, promises to talk about a new bbs
system for CP/M written in Modula-2 that interfaces quite
nicely with Fido-Net. And Andy Meyer of Dunellen, New
Jersey was a beta tester for David Goodenough’s uucp sys-
tem. He will tell us of the CP/M usenet tools. With luck, we
will see one or both in the next issue.

continued page 40

The Computer Journal / #49



Computer Network Power Protection

Problems, Myths and Solutions

By Wendell H. Laidley

[Editor’s Note: The following paper was presented to the Power Quality conference in October, 1990 and is reprinted here with permission
of the author. The points raised in this paper regarding power protection are of importance to everyone using computer equipment. Your
computer investment is more than simply money: systems under development may be irreplaceable and lost data could mean a lost
business or job. Wendell’s position runs counter to prevailing practice. If he is right, the computer using public is at risk. While he
specifically addresses networked sites, the weaknesses he cites would could apply equally to any micro computer system with external
peripherals. TCJ will offer space for viewpoints from others on this vital topic.]

Introduction
Modern computer networks are uniquely vulnerable to
powerline disturbances because they bring together the high
energy powerline and sensitive low energy digital integrated
circuits. Ordinary surge protection techniques can actually
harm computer networks by diverting dangerous surges into
delicate network datalines, through the common reference
ground. Because of this, computer networks need special at-

tention in powerline surge protection.

Point-of-Use Surge Protection

First generation surge protection strategies followed the
conventional wisdom of shunting unwanted surge energy to
ground, the ultimate surge sink. The most common practice
was to build voltage sensitive shunt components into exten-
sion cord power strips, usually using inexpensive MOVs
(metal oxide varistors), or sometimes other shunt compo-
nents such as avalanche diodes (also called TranZorbs), ca-
pacitors or even gas tubes.

The components were originally wired only between the
line and neutral conductors. Unfortunately, this strategy cre-
ated a large common mode surge with a risk of arc-over
between neutral and ground, so most surge suppresser mak-
ers began connecting shunt components between all three
powerline conductors, line and neutral and ground, calling
this configuration ““all three modes of protection”.

For simple stand-alone electronic equipment this strategy
provided basic protection, particularly if the user understood
the limitations of the components, such as the characteristics
of MOVs to deteriorate with each surge incident, and of ava-
lanche diodes to fail “open” in the face of a moderate to
severe surge, thus exposing the protected load to the full

surge. This ““three mode” method of surge protection was
based on the premise that if voltage differences between the
powerline legs at the sensitive electronic load were kept
down to acceptable levels, then it would not matter if all
three conductors were allowed to “float up” with respect to
some absolute or constant reference such as earth ground. In
this way the protected equipment would be like a raft with-
out an anchor floating on water--when a wave came along,
the whole raft would float up, but so long as there were no
anchor to prevent the raft rising, it could float up and down
harmlessly. The theory was that if the surge energy or volt-
age was spread evenly among all three powerline conduc-
tors, its effect would be neutralized, since equipment damage
should only occur if potential differences arose, and by inter-
connecting all three lines with shunt components, such dif-
ferences would be precluded.

The advent of computer networks changed all this by in-
validating this fundamental assumption, much as a fixed
length anchor line would invalidate the assumption of the
free-floating raft in a rising tide. The difference between
stand-alone and interconnected computers around from the
fact that dataline signals between devices are referenced to
ground, and the only “ground”” available at the point of use
of the sender or receiver is the powerline safety ground con-
ductor, represented by the round pin on conventional 110
volt receptacles.

Problems
Now the practice of shunting surges to the powerline
ground becomes unacceptable, because shunting a surge to
the powerline ground will cause the ground conductor volt-
age to rise. This happens because the inductance of the
ground conductor between the recep-

Wendell H. Laidley has held positions of systems engineer and project manager
through executive vice-president for computer manufacturers and property develop-
ment firms. He became president of Isomedix, Inc. in 1985 and left in 1986 to found
Laidley Interconnect Systems, Inc. Upon the sale of his company in 1989, Wendell
joined with Rudy Hartford to found Zero Surge, Inc. to produce powerline protec-
tion equipment. He may be contacted at Zero Surge, 103 Claremont Road, Ber-

nardsville NJ 07924.

The Computer Journal / #49

tacle and the actual zero impedance
ground at the building service entrance
will present impedance to the propaga-
tion of the high frequency surge, caus-
ing the voltage on the ground conduc-
tor at the receptacle to rise with respect
to true ground at the building service
entrance. This is shown in Figure 1,
where the voltage gradient along the



powerline conductors is shown. In effect, a voltage divider
operates, and where the three powerline conductors are of
equal length, Figure 1 shows the voltage distribution that will
occur.

Since the powerline ground conductor is the only ground
available for reference by the signal dataline, diverting surges
to it will have the effect of diverting powerline surges di-
rectly into the datalines, and thus into the sensitive low volt-
age internal circuitry of the computer’.

may alter data in bit streams passing through the CPU. The
huge costs of computer network failures were reported in
1989 by Infonetics, a California market research firm.? They
they reported that local area network downtime costs the
average Fortune 500 company $3.48 million annually with
the average respondent reporting 23.6 network failures annu-
ally, of 4.9 hours average duration. Clearly, these costs de-
serve attention, and one cause of network failure is power-
line surges.

Represents equivalent series

Myths of Surge Protection
Because transient analysis is one
of the more complex and less gen-

as zero
Signal

ground for

Dotaline uainq”poworhm
ge reference

resistance and induchance Conventional shunt erally understood branches of elec-
of wire \ 7 Tge wrpressor trical engineering, the field of surge
6000y (or UPS) rotection has developed b
wiae  Line A 4200v 2400v protection has developed a number
N ‘, . of myths over time. Here are some
{IEEE 587 STO) Surge vollages [ 600’] Computer of them, with possible explanations
midwoy along wire 1‘ of their origins.
Neutral
] soov Myth 1: “Any Surge Protection
‘ 010 5v, Is Better Than No Surge
. A Protection.”
?;??Jk 1800v] This is perhaps the most reason-
1600 vol difference able yet the most misleading of all.
will couse surge As explained above, it is shunt
GE’ nd / current In dololine g qference ground surge suppressers themselves
r.;::'.m.: which divert powerline surges into
Defined datalines, so with networked com-

puters, the wrong design surge
suppresser can actually cause com-
puter network failures. With no
surge protectors at all, incoming
surges will encounter the com-
puter's power supply, which is
considerable more surge tolerant

-FIGURE 1 Surge coupling

Ground: Surge Sink, or Voltage Reference

One, But Not Both

Given this problem, the powerline ground conductor
should not be used as a surge sink with interconnected com-
puters where it is needed for voltage reference by datalines.
The damage caused by diverting surges to ground in net-
worked electronics was first reported by Francois Martzloff
in the 1988 IEEE paper “Coupling Propagation and Side Ef-
fects of Surges in an Industrial Building”.* Martzloff’s re-
search team was performing surge tests on an office building
over a weekend, and when the office workers returned Mon-
day morning they found their printers did not work and the
printer data ports had been damaged. Initially, the research
team had not expected that surges they had applied only to
the powerline would have damaged datalines. On reflection,
they recognized that the powerline surges had indeed been
diverted by shunt surge protectors into the printer datalines
through the common reference ground.

Problems caused by the interaction of the powerline and
datalines through the common ground include physical
hardware damage as reported above, and disruption in the
form of program lock-ups, data alteration, parity errors and
transmission failures. High frequency surges, sometimes
with considerable energy, couple into digital circuitry and

than the dataline circuitry. So net-
work users may actually be better
off with no surge suppresser than
they are with shunt design suppressers which divert surges
into datalines and modems*
Myth 2: ““UPSes Provide Dependable Surge
Protection.”

Because a UPS costs far more than a surge protector, it is
commonly assumed to provide premium surge protection.
Essentially all micro-computer UPSes, 1000vA and under, are
a combination of an inexpensive MOV surge suppresser and
a battery back-up power source. The MOV surge protection
is designed to protect the UPS circuitry, and diverts incoming
surges to ground like a common surge protector (see Figure
1). Once on ground, the surge will circumvent the UPS and
couple directly into any computer datalines.® Since many mi-
cro-computer UPSes are used in the context of local area
networks, this problem must be solved or the UPS will con-
taminate the network datalines. Some UPS makers show how
surges which encounter the battery of the UPS are effectively
eliminated. This is true for the surges which reach the bat-
tery, but most are diverted away from the UPS circuitry to
ground before they reach the battery. Thus the belief that the
battery in a UPS is an effective surge sink is not entirely
relevant or dependable. Just like the basic surge suppresser,
the UPS protects the computer power supply, but in doing

The Computer Journal / #49



- handle the large voltages in ex-

so, it endangers the datalines.

Another risk exposure with UPSes is the alternative power
path around the battery and inverter. So called standby UP-
Ses normally provide direct utility power to the computer,
with only the MOVs at the UPS power inlet as surge protec-
tion, while on-line UPSes generally have a bypass circuit to
enable utility power to flow directly to the load in the event
of UPS failure. Both these circuits provide paths to the pro-
tected load for incoming surges. In the case of the standby

. UPS, the path is direct, while for the on-line UPS, the surge

must pass through the transfer switch, but these switches are
often solid state components with modest tolerance for high
energy surges, so they may not prevent a moderate to sever
surge from passing through them to the protected load.

Myth 3: “Transformers Are The Best Surge
Protectors.”

Transformers are designed to transmit power, not to sup-
press it. The primary source of surge protection in a trans-
former is its leakage inductance, which relates to its mass.
This inductance provides some

i
I
L

designed for surge suppres-
sion. A transformer is far from
an ideal surge suppresser and
presents significant disadvan-
tages such as ringing, regula-
tion, increased source imped-

ously for voltage fluctuations. If the voltage drops, it draws
current for a longer period, until it replenishes the energy it
has put out since its last recharging from the previous cycle
of the power wave (see Figure 2). Because of this natural
ability of a switch-mode power supply to accommodate
varying source voltages, it gains no benefit from a voltage
regulating transformer. Instead, the increased impedance in-
serted into the line by the transformer may hinder the power
supply by restricting the current available to the power sup-
ply when it calls for current. Switch mode power supplies
prefer a low impedance power source that can deliver high
current when demanded. Inserting a tap-switching voltage
regulating transformer in the powerline will add impedance
and restrict the amount of current available to the computer
power supply. It may also introduce noise if the tap switch
hunts back and forth between adjacent output taps. Com-
puter switch mode power supplies often have a wider toler-
ance for input voltage than do regulating transformers them-
selves. Thus the primary benefit of a voltage regulating trans-
former is its leakage inductance, which is much less than in

St

Sz

ance and efficiency loss. They
also have substantial parasitic
capacitance to ground which
can couple surges to ground,®
and transformers used for
surge protection sometimes
use MOVs since the trans-
former may be unable to

surge protection, but less than
|

would inductors specifically
- Tz —‘—'|

ternal surges.

The two major advantages
of transformers are that they
have surge absorbing mass
(leakage inductance) and are
available as a complete sub-assembly which eliminates the
need to design a custom surge processing circuit. The often
cited benefit of common mode protection with isolation
transformers is somewhat of a red herring issue with com-
puters, as discussed below under Common Mode. Also,
while point-of-use isolation transformers re-establish the
neutral-ground bond on the transformer secondary, the new
ground is rarely connected to a new earth rod, and is almost
always connected to the incoming powerline green wire, po-
tentially compromising surge isolation, at least in respect to
dataline exposure through the reference ground.

Myth 4: *Voltage Regulating Transformers Are Useful
With Computers.”

Most modern desktop computers use switch mode power
supplies rather than the older style linear power supplies. A
switch mode power supply draws from the powerline ac-
cording to the amount of energy it requires to maintain its
output power. In this sense it is a natural integrator of volt-
age and current, and it compensates naturally and spontane-

The Computer Journal / #49

Area Under Curve Si for Time Ti = Area Under Curve S: for Time T:

FIGURE 2: Switch Mode Power Supply

isolation transformers, but the regulator introduces offsetting
disadvantages, and its voltage regulation offers no material
benefits.

Myth 5: “Common Mode Surges Cause Computer
Problems.”

Just as modern switch mode power supplies compensate
spontaneously for voltage variations, they also naturally at-
tenuate common mode noise. Desktop computer switching
power supplies have five orders of magnitude of common
mode noise attenuation built in. The EMI / RFI filter pro-
vides two orders of magnitude attenuation, and the high fre-
quency isolation transformer in a switching power supply
offers three more orders of magnitude common mode pro-
tection at surge frequencies. Common mode sensitivity in
computers is a function of slew rate and amplitude of the
common mode disturbance. Low voltage, low frequency
ground potential differences will not cause disruption or
damage, because the primary cause of disruption is coupling,
which depends on frequency and amplitude.



Computers are inherently immune to common mode dis-
turbances below a certain threshold, but problems occur
when high energy incoming normal mode surges are con-
verted to common mode surges by the action of a shunt
surge suppresser. The only source of external surges is nor-
mal mode since neutral and safety ground are grounded to-
gether at the service entrance (see Figure 1). The high energy
of external surges converted to common mode may exceed
the common mode tolerance of the computer, but naturally
_occurring high frequency, low energy common mode noise
will not. This problem can be eliminated by keeping shunt
surge suppressers off circuits powering computers, thus
eliminating the conversion from normal mode to common
mode.

“Computer Modem Damage Is Cause By
Surges On The Phone Line.”

The telephone line is a high impedance circuit which can-
not support high energy surges, so they rapidly die away
after the inducing source (i.e. lightning) disappears. In con-
trast, the low impedance powerline provides an ideal propa-
gation network for high energy surges. Also, the telephone
line service entrance is protected to under 300 volts, which
powerline surges can reach 6,000 volts before they will arc
over in 110 fixtures.

Myth 6:

The mechanism for most computer modem damage is
through high energy powerline surges being diverted to the
reference ground and coupling into the digital side of the
modem. The elevated voltage then seeks the telephone line
ground reference on the analog side of the modem and arcs
through the modem.”

As a corollary to this, it can be seen that dataline or tele-
phone line protectors may not be effective or may even cause
disturbance problems. Dataline protectors which limit volt-
age between conductors are of limited benefit since exter-
nally induced surges, such as from lightning, will appear
commonly on both (or all) conductors passing the the induc-
ing magnetic field, and the problem is not between individ-
ual conductors, but between the conductors and ground.
Similarly, telephone line protectors which provide shunts to
the powerline ground, commonly found as cube taps which
provide two telephone line jacks and plug into 110 volt re-
ceptacles (with plastic rectangular inserts and a conductive
ground pin insert to the receptacle) may introduce more dis-
turbance to the telephone line from the powerline ground
than they relieve from the telephone line to the powerline
ground.
Myth 7: “*Signal Ground Is Isolated From Chassis
Ground.”

Some manufacturers attempt to isolate signal ground
from frame ground, but all such isolation configurations
have coupling coefficients and dynamic ranges, both of
which are likely to be exceeded by high energy external
surges. An inspection of most such isolation circuits shows
their effectiveness to be generally limited to short duration,
low energy noise.

Myth 8. “‘Transformer Coupled Datalines Are Immune.”

These configurations also have coupling coefficients and
dynamic ranges, and their effectiveness against low energy
noise may not extend to much higher energy surges diverted
to the powerline reference ground by ordinary shunt surge

suppressers. Even optical dataline converters may be dis-
turbed by such high energy surges.

Myth 9: “The Only Risk From The Powerline Is
Hardware Damage.”

Computers are vulnerable to data alterations as bit
streams pass through microprocessors, and stray power
surges can alter data or programs, causing data errors that
may never be found or program errors or lock-ups which
cannot be traced. The consequential cost of such soft damage
can be very high?

Myth 10: “My Surge Protector Is A Permanent Device.”
Most point-of-use surge protectors use metal oxide varis-
tors (MOVs) as their primary protection component. This in-
expensive (15 cent) component, despite all its strengths,
wears out a little with each surge® above a very modest
threshold that is exceeded many times daily in most environ-
ments. As Mark McGranaghan wrote in the premier issue of
Power Quality, “MOVs cannot handle the energy generated
by the switching of utility capacitor banks.”® Unfortunately,
the race among surge protector manufacturers to provide the
best protection (lowest let-through voltage) has led them to
use lower voltage MOVs which age faster and fail sooner.!
The normal failure mode for an MOV is thermal runaway to
short circuit, and they have been known to cause fire."! [Ed.:
Consider this as you ook at the MOV suppresser sitting on your carpet
under your drapes.] MOV based surge suppressers wear out
and should be replaced periodically. Unfortunately, the
equipment to test an MOV is very expensive (on the order of
$20,000) and indicator lights purporting to show that protec-

" tion is operational are not always reliable, and are sometimes

wired across the powerline, indicating only that the power-
line is live.

Myth 11: “Nothing Can Stop Lightning.”

Of course, this simple statement is true, but in all but the
rarest of cases, it may be misleading. Two important qualifi-
ers operate to limit damage from lightning. The first is that a
direct lightning strike is extremely rare, and, of course, in
that case, equipment and personnel may both be destroyed.
But lightning normally manifests itself in the powerline as
induced currents caused by the lightning magnetic field on
the conductors passing through the field. Thus we normally
need only deal with the induced surge, not the lightning
strike itself, and the induced surge energy will be limited by
the capacity of the conductor to carry the surge energy. The
second factor is that surge voltages are limited to 6,000 volts
by the arc-over level of fixtures in 110 volt circuits. Thus
surge protection need only deal with voltages up to 6,000
volts, and currents determined by the impedance of the
source. There are surge protectors available which suppress
up to 6,000 volts and unlimited currents to under 250 volts
without degradation, without disturbing the critical reference
ground.

Myth 12: “You Get What You Pay For.”

The assumption that higher priced surge protectors pro-
vide greater effectiveness and reliability is not always valid.
Almost all surge suppressers under $200 rely on the same
fundamental MOV components. Much of the supplementary
circuitry is peripheral to the surge protection, such as lights

continued page 39

The Computer Journal / #49



Floppy Disk Alignment with the RTXEB and Forth

Part One

By Frank C. Sergeant

Introduction

General Description
This paper describes a Floppy Disk Drive Aligner built

around the RTX2001A microprocessor. It shows how to add
I/O ports and control hardware to generate and measure’

voltages and time intervals. Examples show how to control
the RTX's interrupts and timers and how to put all these
parts together to create a smart instrument that provides sev-
eral improvements over the usual method of aligning drives.
A full source code listing and schematic are included. These
hardware and software techniques can be applied to almost
any RTX project.

A disk exerciser controls which head is active and steps it
from track to track. The oscilloscope displays the signal from
the drive’s read amplifier. These are used with an analog
alignment disk (AAD) that contains special patterns needed
to align the drive. The Aligner uses a standard AAD and
replaces the exerciser and the oscilloscope that are normally
used. It could display the results on a self-contained LCD or
through a serial line to a PC or terminal.

The RTX2001A provides advantages both during the de-
sign stage and in the final product. An RTXEB Evaluation
- Board with Forth in ROM and a wire-wrap area was used,
with an XT clone, as the entire development environment.
This could well obsolete expensive development stations.
Development was easy because of the interactive access to
the hardware and the modular nature of Forth. The RTX is
fast, letting software replace hardware (in this application,
for example, the ADC and the Peak Detector were done in
software).

Alignment
An alignment is done to restore the correct mechanical

relationship between the head and the diskette. When a head
moves out of alignment the drive may not be able to read
disks it wrote some time ago or to exchange disks with other
drives. There are two basic head position adjustments: RA-
DIAL (when on track 16, the head should be the correct dis-
tance from the center of the disk) and AZIMUTH (the head
should be “square” to the track, rather than skewed). At the
same time such things as motor speed and the various sen-
sors are checked and adjusted.

The discussion will center around the alignment of a Tan-
don 5-1/4 inch, 360K drive using the DYMEK DK 502-1
AAD. Generally the same procedure is used for all floppy
drives, but a different alignment diskette will be needed for
other densities.

Aligning Disk Drives

The Problem

Ordinarily, a drive is alighed using a disk drive exerciser
and an oscilloscope. The bulkiness of this equipment makes’
aligning drives at the user’s site awkward, so drives are usu-
ally removed and taken to the shop for servicing. This in-
creases the turn-around time and the expense and inconven-
ience to the user.

One approach to this problem is the digital alignment
diskette. This eliminates the need for the oscilloscope and the
exerciser. The idea is to run a program on the computer
whose drive is being aligned. This eliminates the bulky
equipment but makes the technician’s work more difficult
since the drive must stay attached to its computer. Often
there is not proper working room and the drive balances
precariously on top of the open computer case. In additipn,
technicians generally believe that a digital alignment diskette
produces inferior results. Often, it is merely used as a quick
Go/No Go test to decide whether to

Frank Sergeant is a hardwarc/software consultant specializing in business and/or

take the drive to the shop for an (ana-
log) alignment.

realtime systems. He is the author/implementor of Pygmy Forth for PC/MS-DOS

systems (version 1.3 is available from FIG, GEnie, and fine BBSs and sharcware
houses everywhere). He has been designing, building, and programming microcom-
puter systems since the late *70s. One of his greatest joys is replacing hardware with
software. He is in the process of porting Pygmy to the Super-8, 68HC11, RTX, etc.
His floppy disk drive aligner entry won the RTX design contest. Shortly thereafter
he was shocked to hear the RTX was being abandoned by Harris. However, recent
conversations with Harris officials have reassured him that it was only future devel-
opment that was abandoned. Harris has fully, publicly committed to producing the
RTX for a minimum of 2-1/2 years. In light of that, Frank breathed a sigh of relicf
and continues his RTX development work. Frank can be reached as F.SERGEANT

on GEnie or through TC]J.

The Computer Journal / #49

The Solution

The RTX2001A runs fast enough
that it can combine the disk drive exer-
ciser functions and the oscilloscope
function into a single compact unit.
Npw, accurate on-site alignment can
be done (using the AAD) and this be-
comes the preferred choice. The RTX
chip with some simple support cir-
cuitry, on perhaps a 4 x 5 inch board,

7



scr # 3601
( Adjust the RTX memory map to give the most code space )

17186 DUP H~-FENCE ! H ! ( Lower the start of the dictionary)
to just above the end of the data)
space needed by the Aligner)

17194 R-TOP ! Mark the new top of data space.)
When we finish loading, THERE )
will have a value of 17184, which)
is just under our new value for)
H-FENCE and H. R-TOP must be set)
higher, though, or EBFORTH thinks)
we'’'ve crossed the limit when we)
really haven’t.

o o~~~ -~ —

scr # 3901

The memory map of EBFORTH separates data space from
code space (for easy ROMability). During development
these are both in RAM, which can be allocated between
them by changing a few pointers.

scr # 3602
(' Terminal specific definitions)

2EMIT ( hhll -) DUP -8 SHIFT ( xxll xxhh) EMIT EMIT ;

s+ LOAD ( scr# -)
DECIMAL 5 ( ie code to request a screen) EMIT 2EMIT ;

THRU ( 1lst last -)
DECIMAL 6 ( le code to request a range of screens) EMIT
SWAP ( last 1st) 2EMIT ZEMIT ;

: AT ( ¥y x =)
8 ( ie code to request direct cursor positioning) EMIT
SWAP ( x y) EMIT EMIT ;

: CLSs ( =) 9 ( ie code to request clear screen) EMIT ;

scr §# 3902

2BMIT Break a 16 bit number into 2 bytes and EMIT
them.

LOAD Request that host send a screen.

THRU Request that host send a range of screens.
AT Ask host to position cursor at y x co-
ordinates. Origin is upper left corner. Height

is sent lst followed by width.

CLsS Request that host clear the screen.

scr §# 3603

( Variables )
VARIABLE OUT
VARIABLE TRK

( holds last value written to output port)

( holds current disk drive track position)
VARIABLE HEART ( holds addrese of active test routine)
VARIABLE Vb ( holds base voltage for azimuth test )
VARIABLE COMP-FLAG ( set true if comparator goes high)
VARIABLE #PEAKS ( EI3-INTW uses it to count wave-form peaks)
VARIABLE OSCALE ( ‘‘oscilloscope’’ scaling factor for raw data)
VARIABLE OTRIG { '‘oscilloscope’’ trigger delay in ms)
VARIABLE WINDOWS
14 ALLOT ( starting and ending times for azimuth bursts)

8 OSCALE | ( reasonable starting value for cat’s eye display)

scr & 3903

OUT Holds last value written to the output port.

This is important because the output port is
write-only. We cannot read it back, so every time we
write a new value to it, we save a copy in the variable
OUT.

TRK Holds current disk drive track. The only time

we can read the track position directly from the drive
is when it is on track zero (the track0 line goes
true). The word RESET steps the head outward, toward
track zero until the track0 line goes true and then
stores a zero in TRK. Thereafter every time we step the

25 OTRIG ! ( ms from index pulse ) head we also update TRK.
WINDOWS This array holds the starting and ending timer
values for each of the four azimuth bursts. This
information is discovered by CLOCK and MARK and then
used by AZ to measure the azimuth burst amplitudes at
the correct times.

scr § 3604

{ Constants )

199 CONSTANT #SAMPLES
( # of samples less one to be collected for cat’s eye )

( bit-masks for output port devices )
{ 1 CONSTANT LED )
( 2 CONSTANT *DRVO )
( 4 CONSTANT *MOTOR )

8 CONSTANT HEAD

16 CONSTANT *DIR

32 CONSTANT *STEP
( 64 CONSTANT *WE )
( 128 CONSTANT *WRITE )

scr §# 3904

#SAMPLES Number of measurements to take (less one, to
adjust for FOR NEXT) for the cat’s eye pattern during
one revolution of the disk.

The only output lines we need (connected to the 34 pin
disk connector) are HEAD, *DIR, & *STEP. The *WE,
*WRITE, & LED bits are connected, but commented out
here since we don’t use them. The *DRV0O and *MOTOR
lines are not connected to the output port. Instead,
they are hardwired active (low). If you wanted to put
them under program control, they could be connected to
bits 0 and 1 (with bit masks of 2 and 4).

These control lines are connected to the lower byte of

the output port. The DAC is connected to the upper
byte.

The Computer Journal / #49



replaces essentially all of the hardware of both the disk exer-
ciser and the oscilloscope!

The technician communicates with the Aligner through
any terminal or PC, perhaps the PC whose drive he is align-
ing. Or, the Aligner could show its results on an LCD. By
reducing bulk and eliminating complexity and extra cables,
the RTX makes on-site alignment more convenient, cutting
servicing costs and downtime. Since it is software based, up-
grading to handle new types of drives is easy.

How The Exerciser Part Works

The standard 34 conductor cable carries the write-protect,
track-zero, index, and read-data signals from the drive to the
Aligner and the step, direction, and head select signals from
the Aligner to the drive. The Aligner controls the step line to
move (SEEK) the head from track to track, and monitors the
track-zero switch. With this and the simple terminal interface
it can step the drive to the proper tracks to read the AAD’s
different test patterns and report the status of the drive. To
check the motor speed, the time between index pulses is
measured. To check the track-zero switch, the track-zero line
is monitored while the head is stepped toward track zero.

How The Oscilloscope Part Works

The Aligner measures the amplitude of the read signal by
doing analog to digital conversion in software, using the
DAC and comparator. These readings are then displayed as a
histogram using columns of ‘X’s on a character based termi-
nal, or as a higher resolution picture on a graphics terminal.
This provides the cat’s eye and azimuth burst displays the
technician needs.

Interfacing to the RTX

I/O Port Hardware

‘ Although the ASIC bus has some interesting possibilities
for on-chip integration, for our purposes just think of it as the
1/0 bus. This is also called the G-bus. It is made up of 16
data lines, 3 address lines, and 2 control signals. The 3 ad-
dress lines mean that you can have a maximum of 8 I/O
addresses. Each I/O address can access 16 inputs and 16
outputs, for a total of 32 bits per address.

Since the Aligner only needs 4 inputs and 14 outputs (and
we could get by with fewer) we don’t need to decode the G-
bus address lines at all, only the control signals are needed.
GIO* goes true (low) on either a read or write of a G-bus
address. GR/W* goes low for a write and stays high other-
wise. We latch data to the output port only when both GIO*
and GR/W* are low. We enable data from the input port
only when GIO* is low and GR/W™* is high. Because of this
approach any external G-bus address will work with our
ports. Throughout the listing G-bus address 31 is used, but
any of the addresses 24 through 31 will work equally well. Be
careful not to use addresses 0 through 23 as they address
internal devices on the ASIC bus (that is, they address proc-
essor registers). 74HC373 latches are used for all the ports.
Two of them face outward, providing 16 outputs. One faces
inward, providing 8 inputs. Note, with this method the out-
puts are write-only. If you try to read them, you will get the
inputs at the same address.

The Computer Journal / #49

1/O Port Software

31 G@ reads the input port and leaves it on the stack. u 31
G! stores the number u to the output ports. Only 8 bits of the
16 that are available are connected for the input port. All 16
bits are connected for the output port. Usually we will not
just store a number to the output port; we will also save a
copy in the variable OUT. This keeps track of what we last
wrote, allowing us to change selected bits without disturbing
the others.

Here is an example of how to use the I/0 ports. Look at
the schematic and note that the least significant bit (LSBit) of
the output port is connected through an inverter to an LED.
(The base is hexadecimal for these examples.) The simplest
way to flash the LED is to type

HEX

31 Gt { turn on LED)
31 Gt { turn off LED)
31 G! { turn on LED)
31 Gt ( turn off LED)

over and over. If the LED goes on and off, the output port
address decoding (and our understanding of it) is verified.
The above approach has the flaw that we might be altering
other bits (that affect devices other than the LED). We can't
justdo

31 Ge 1 OR
1 Ge FFFE AND

31 G!
31 G!

because we would not be reading the output port. We would
be reading the input port. So, we save a copy every time we
store something to the output port, and we read this copy
when we want to know what we last wrote. This would
work:

VARIABLE OUT ( define a variable to keep the copy)
FFFF DUP 31 G! OUT ! ( put bits in a known state )

ouT ¢ 1 OR DUP 31 Gt OUT ! ( LED on)

OUT ¢ FFFE AND DUP 31 Gt OUT ! ( LED off)

ouT ¢ 1 OR DUP 31 G! OUT ! { LED on)

OUT € FFFE AND DUP 31 G! OUT ! { LED off)

Naturally, using Forth, we won't keep doing all this typ-
ing. Instead we will hide these details in a convenient defini-
tion, as follows:

: ON ( bit-mask -)
: OFF ( bit-mask -)

OUT € OR
NOT OUT € AND

DUP OUT !
DUP OUT 1§

31 Gt ;
31 Gt ;

Since the LED is connected to the LSBit of the port, the bit-
mask for it is simply 1. Note that OFF takes care of inverting
it for the AND so that we don’t have to think in comple-
ments. Now we can flash the LED with

1 ON
1 OFF
1 ON
1 OFF

but, why should we have to remember that the bit-mask for
the LED is 1 (“because it is easy to type”” you might reply)?
We'll hide that detail too:

1 CONSTANT LED
LED  ON
LED OFF
LED ON



scr # 3605
( read disk status from input port )

.

P& ( -~ u) 31 G& ; MACRO ( '’‘P fetch’’ read from input port)

INX? ( - £) P@ 1 ( ie bit mask for index line) AND 0= ;

?NOT-INX ( -) BEGIN INX? 0= UNTIL ;

s 2INX { =) BEGIN INX? UNTIL ;

SYNC ( -) ?NOT-INX ?INX ; ( wait for start of index pulse)

.

TRKO? ( - £) P@ 2 ( ie bit mask for trk 0) AND 0= ;

WP? ( - £f) P 4 ( ie bit mask for write protect) AND 0= ;

scr # 3905

Read Disk Status - The input and output ports are
separate ports accessed by a read or write of ASIC
address 31. The GR/W line determines whether the 16
input bits or the 16 output bits will be accessed. As
long as we don’t need more than 16 ‘I’'s and 16 ‘O’s, we
can have 32 I/0 lines without decoding the ASIC address
lines.

To read a status line, we read all 16 bits and then
isclate the one we are interested in by ANDing with its
bit-mask. Since these are active low, we follow with
0= so we will have a true flag only if the line we are
interested in is low.

scr # 3606
( write to output port )

T P1 (u =) 31 Gt ; MACRO ( ‘‘P store’’ write to output port)

( set or clear a specific bit without disturbing the others)

ON ( bit-mask -) OUT & OR DUP OUT i P! -1 ON

:+ OFF ( bit-mask -) NOT OUT @ AND DUP OUT 1 P!

~

scr §# 3906
P! Write the value on the stack to the output port.

ON This reads the variable OUT to find out what we
wrote to the ocutput port last time, ORs in the new bits
we want to turn on, saves the result in OUT for use
next time, and writes the result to the output port. As
soon as ON is defined, we use it to write all ones to
the output port so it will be in a known state. The
point is that ON let’s us turn specific bits on without
disturbing the state of the other bits.

OFF Does the same thing except it turns specific bits
off without disturbing the others.

scr # 3607
( select active disk head - either head zero or one )

: HO ( -) HEAD OFF ;
+ Hl ( -) HEAD ON ;

:t -H ( =) ( '‘toggle head’’)
OUT @ HEAD AND IF HO EXIT THEN HI ;

scr #3907
HO Make head zero the active head.

ni Make head one the active head.

b | Switch from one head to the other.

scr # 3608

step head to selected track )

STEP ( -) *STEP OFF 5 MS *STEP ON 10 MsS ;

+STEP ( -) *DIR OFF STEP 1 TRK +! ; ( move head inward )
-STEP ( -) *DIR ON STEP -1 TRK +! ; ( move head outward )

o se e o

¢ SEEK ( track -)
DUP TRK € - ( trk #steps)
+DIR OVER 0< IF ON ELSE OFF THEN ( trk #steps)
?DUP IF ABS 1- FOR ( trk) STEP NEXT THEN TRK 1| ;

RESET ( -) BEGIN TRK0? 0= WHILE ~STEP REPEAT 0 TRK 1 ;

TRK1 ( -) 1 SEEK
TRK16 ( -) 16 SEEK
TRK34 ( -) 34 SEEK

. 0w e
~e o~ we

scr § 3908

Whenever the *STEP line is pulsed low, the heads move
one track either in or out. The *DIR line determines
the direction. When *DIR is low, when *STEP is pulsed,
the head will be stepped outward (toward lower
numbers). Otherwise, when *STEP is pulsed, the head
will move inward (toward higher numbers).

SEEK Move the head to the specified track. It
compares where it is (based on the current value of
TRK) to where you want it to go, to determine which
direction and how many STEPs. All these words that
affect the track location must update TRK. Before
stepping the heads the lat time, RESET should be
performed to synchronize the head location with TRK.

scr §# 3609
( Clamp value between allowable limite )

: CLAMP ( n lower-limit upper-limit - n’)
>R MAX R> MIN ;

scr # 3909
CLANP Force the number to be in bounds.

scr # 3610
( accept a number from keyboard)

: #IN ( - u)

PAD 1+ 5 EXPECT 0 0 PAD CONVERT 2DROP ;

10

scr # 3910

#IN Accept up to 5 keystrokes and convert to a
number. This word allows the menu to prampt the
technician for a number. This is used in the words
OTRIG and OSCALE to get the new values for the cat’s
eye trigger delay and the scaling factor (Range) for
the cat’s eye graph.

The Computer Journal / #49



LED OFF

Now, if we connect another device to the next bit over, it
would have a bit-mask of 2.

2 CONSTANT NEW-DEVICE

LED ON
NEW~-DEVICE OFF

We can turn one device on or off without disturbing the
- other. Look at screen #3636. This carries this same example a
little further, showing how to read the drive’s *Index line and
make the LED go on and off in sync with it. With a disk
spinning in the drive the LED will flash 5 times a second.

TIMERS

The RTX provides 3 on-board timers. They run all the
time, counting down to zero and automatically reloading
with the last value stored in them. They can count external
events, but in this application they just count RTX clock
cycles. Timers are 16 bits wide. Each can be the source of an
interrupt or can be read directly. Here’s how to set timer 1 to
count down with a one millisecond time period

8000 TC1t

This assumes an 8 MHz clock, which gives 8 RTX cycles
per microsecond and 8000 per millisecond. You only have to
initialize the counter once, then each time it counts down to
zero it will automatically reload with the same value. You
can read the counter with

TCl@

which leaves the value on the stack. If you want to find
exactly how long a group of instructions takes to execute you
can initialize the counter before the group and then read it
afterwards, as follows

: TIMEIT ( - cycles)
0 TC1t <group of instructione to be measured>
TC1é NEGATE ;

The NEGATE adjusts the down-counting value to the
number of elapsed cycles. Timer 1 has priority level 8, so its
interrupt routine would be installed, enabled, and disabled
as follows

T1-INT 8 ! INTERRUPT ( install from the keyboard)
[’] T1-INT 8 IINTERRUPT ( install from a definition)
TIMER]1 UNMASK ( enable)
TIMER1 MASK ( disable)

The timer interrupts are edge triggered. This means that if
the timer has been running awhile before you enable its inter-
rupt then an interrupt will be pending. It will wait and wait
until you finally enable it, and immediately jump to the han-
dler. So you get an ‘extra’ interrupt.

Interrupts

There are lots of interrupts. Five of them are connected to
external pins EI1 through EIS5. EI5 is in use on the RTXEB for
serial communication with the host. The Aligner only uses
EI3. These are level sensitive, active high.

Interrupt handling in Forth on the RTX is very easy. Ona

The Computer Journal / #49

regular micro you treat interrupt handlers cautiously. They
have to be installed just right. Then you must figure a way to
trigger them to see if the handlers work. You can't just use
JSR or CALL as the handlers must end in return from inter-
rupt instructions rather than return from subroutine instruc-
tions.

However, on the RTX, the regular return instruction is the
same for both interrupt handlers and subroutines! This al-
lows you to call the handler directly--even from the key-
board--rather than setting up complex test scaffolding. For
example, here is an interrupt routine to set a variable and
then disable itself
: EI3-INT ( -)

~1 COMP-FLAG ! EI3 MASK ;

It can be tested from the keyboard by setting COMP-
FLAG to zero then typing EI3-INT. Then reading COMP-
FLAG, again from the keyboard, to see if it really has a -1 in
it. In this application, since the store (!) operator does not
affect the carry flag, nothing needs to be saved and restored.
This external interrupt (EI3) has a priority level of 10, so the
above handler can be installed with

EI3-INT 10 !INTERRUPT
[‘] EI3-INT 10 !INTERRUPT

( from the keyboard)
( within another definition)

It takes the address of the handler and stores it in the level
10 slot. EI3 UNMASK enables the routine and EI3 MASK
disables it. This can be done from the keyboard or from
within another routine or program. Friendly? Yes. Difficult?
No. Fast? Ah, that’s where the RTX really shines. The latency
is 1 to 2 cycles (125 to 250 ns with an 8 MHz clock) max and
the return is usually free.

The Aligner--Hardware Components
A standard 34 conductor ribbon cable connects the
Aligner to the drive. This connects the status signals to the
RTX input port and connects the control signals to the RTX
output port. In addition, a test clip is used to connect the
drive’s head read amplifier signal to the Aligner.

Disk Drive Status Signals

Four inputs are used to read the drive status signals.
These are *Index, *Track0, *Write-Protect, and *Read-Data.
These are active low. *Index pulses low whenever the index
hole in the diskette is lined up with the hole in the jacket (an
LED shines through the hole, activating a sensor). This is the
main synchronization signal. *Track0 is low whenever the
head is moved outward enough to activate the track zero
switch on the drive (which happens, ideally, whenever the
head is sitting on track zero). This sensor is a micro switch.
*Write-Protect is low whenever a diskette in the drive has its
write protect notch covered. This sensor can either be an LED
or a micro switch. *Read-Data is the raw read signal that
pulses low briefly whenever the drive detects a flux transi-
tion on the diskette. These are all open-collector digital sig-
nals. The Aligner has pull-up resistors on its input port so
that these signals can be read correctly.

to be continued next issue.

11



Disk Drive Control Signals

Five outputs are used to send control signals to the drive:
Direction, Step, Write Data, Write Enable, and Side Select.
These are all digital signals. The *Motor On and the drive
select control signals could be connected to outputs, but are
not; they are hardwired active.

Signal Conditioner

Only one analog signal is needed from the drive: from the
head read amplifier. This is picked up with a test lead or
alligator clip (from TP1 or TP2 on Tandon drives). After con-
ditioning and comparing, this will trigger an interrupt on
EI3.

The signal we need to condition comes from the output of

‘scr # 3611
( DACt write to 8 bit R-2R DAC )
: DAC! ( u -)
7 FOR 2* NEXT ( u*256)
OUT @ 255 AND OR ):3

( put it in high half of output port; don’'t change low half)

note that we do not save the dac value in OUT as we do )
for the disk drive control bits - the lower byte remains )
undisturbed and the lower byte of OUT is still valid. )

scr # 3911
Digital to Analog Convereion

This system uses an 8 bit DAC built with an R-2R
voltage divider network, using 47K ohm SIP resistor
packs. 2R equals 47K and R equals half of that (2 47K
resistors in parallel). This gives a 256-step output
between GND and the power supply. This is further
scaled by a fixed voltage divider (100K & 10K) to cut
the output by about an eleventh (a potentiometer could
be substituted), giving a closer match to the signal to
be measured.

A similar result can be achieved by using an integrated
8-bit DAC.

DAC! Set the output voltage level.

scr # 3612
( EI3-INTW interrupt handler used by CLOCK )
( save time when each peak starts, starting at PAD)

( the beginning of each peak will trigger this interrupt)

EI3-INTW ( -)

TC18 CRE ( time cc)

1 #PEAKS +!

IMRe ( time cc imr)

EI3 NOT IMR! ( ie mask all interrupts except eil)

ROT PAD #PEAKS € 2* + ( cc imr time a) ! ( cc imr)

BEGIN CRE 0> ( ie msbit of CR will be set)

( as long as comparator is high)

( ie bail out if timer counts down too far)

{ loop until wave peak goes away)

TC1l@ 1000 U<
OR UNTIL
IMR! CRI! H

scr #3912

EI3 interrupt routine to map windows for azimuth
bursts

EI3-~-INTW (‘W' for ‘‘window’’) This stores the

current timer value at PAD and waits for the comparator
to go low again, so we don’t count a wave more than
once. These timer values represet the count-down values
from the start of the index pulse. All of the peaks of
interest occur in about the 1st two milli-seconds.

This int handler just stores the values. It is set up
by CLOCK. Then MARK is used to figure out from these
times where the azimuth bursts occur.

scr # 3613
( CLOCK find when azimuth bursts occur )
: CLOCK ( - )

Vb & 4 + DAC! ( set dac so any wave peak will trigger int)
PAD 200 ERASE ( clear at least the lst few bytes for data)
(‘] EI3-INTW 10 !INTERRUPT ( install interrupt handler)

0 #PEAKS 1 ( initialize wave counter)
SYNC ( wait for index pulse)

0 TCl1l! EI3 UNMASK ( start timer and allow interrupts)
2 MS ( 2 milli-seconds is plenty of time)

EI3 MASK ; ( stop interrupt handler)

scr §# 3913
Find when azimuth burste occur

CLOCK Set DAC to a value low enough that every wave
peak should trigger the comparator. Set up the EI3
interrupt handler. Wait for the index pulse (SYNC).
Initialize timerl. Note that timerl is not enabled as
an interrupt source, but that the EI3 interrupt
(connected to the comparator’s output) reads timerl to
find out when the current wave peak occurs. We let it
run for ‘‘2 MS’’ (actually longer because of the time
spent in the interrupt handler) and then close down the
operation by masking the interrupt.

The data we have gathered will be processed by MARK.

scr §# 3614

( EI3-INT note it if comparator ever goes active )

: EI3~INT ( -)
-1 COMP-FLAG ! EI3 MASK ;

( this is just about the ideal size for an interrupt handler)

12

scr # 3914

Note whether the comparator ever goes active.

EI3-INT This is a very simple interrupt handler. If
it is invoked (by the comparator going active) it notes
that fact by setting COMP-FLAG true. Then, it disables
itself. It is used to let us know if the disk drive
signal exceeded the voltage reference level set by the
DAC at any time during a particular time interval. It
turns itself off so it won’t be invoked repeatedly
during the high part of a wave.

On the RTX, unlike most processors, the return from
interrupt instruction is the same as a return from

subroutine. This allows an interrupt handler to be

teated from the keyboard just like any other Forth

word!

The Computer Journal / #49



Motor Control with the F6SHC11

Second of a Series

By Matt Mercaldo

As 1 was going through the development cycle for this
article on driving a stepper motor, | realized how apparently
complex it is to work with a single board computer. Fortu-
nately the NMI series of singleboard computer is predictable,
and when approached logically, works quite well with most
PCs. This article will serve as an introduction to working
with the line of NewMicros F68HC11 based single board
computers. The typicai development environment, the as-
sembler and how Forth does assembly language will be re-
viewed. Finally a stepper motor will be spun as promised in
the first article of this series.

Max-Forth, a PC and You

The single board environment has three components:
source code, a communications program, and Max-Forth on
the single board computer. All of my development is done
from the Mac with MicroPhonell by Software Ventures, but
the principles and settings apply to most platforms and most
communications packages. I chose MicroPhonell because of
its powerful scripting language that eases the “pain” found
in the development cycle of having to download modules,
being attentive to errors and the like.

The MaxForth Side

Max-Forth is a Forth interpreter. It accepts characters from
the serial line at 9600 baud (8 bits, no parity). Characters
combine to form commands. These commands or Words
(Words are another name for Forth commands) are deline-
ated by spaces. A line is interpreted upon reception of a
carriage return character. Word names can be composed with
any group of characters other than a space character or a
carriage return character. Max-Forth echoes all characters
that it receives. When Max-Forth receives a carriage return
and interprets the line, it may return a message--it will al-
ways send a line feed character ( *] ) last.

Assume the word HEX is typed at the keyboard of your
communications program when connected to Max-Forth on a
NewMicros board. The following sequence ensues: ( “M is a

carriage return, "] is a line feed, _is the cursor. )

Character typed Max-Forth’s echo

H_ H

HE E

HEX_ X

HEX<cr> "M*J OK “M*J
HEX OK

The PC Side

This information on how Max-Forth behaves is very im-
portant when deciding on a communications program. If the
communications program could wait for a sent character to
be echoed, and upon reception of a linefeed (*] character)
send a new line, a file could be automatically download to
Max-Forth for interpretation. Most communications pro-
grams do just that. They can be configured to wait for echoed
characters and send the next line after receiving a "] charac-
ter. In MicroPhone 1l, a carriage return must be sent after the
line is sent. (I don’t really know why this is, but it works!)

The Source File

Different text editors maintain text information differ-
ently. In the typical Mac Edit program, a line is ended with a
carriage return character only. In other text editors, a line
feed may be added to form a carriage return, linefeed pair.
Some text editors put a tab character in the text upon recep-
tion of a tab character, others put the default number of
spaces into the text upon reception of a tab character. Two
things that Max-Forth will not accept are linefeed characters
and tab characters. Assume that Max-Forth receives
<tab>HEX<cr> as a new line to be interpreted from a file.
Max-Forth will try to find <tab>HEX in its dictionary of
Words - the goal is to find and execute the word HEX. Max-
Forth will not find <tab>HEX in its dictionary--it will find
HEX. The same applies to linefeed. (The tab caused much
anguish when | started to use MicroPhonell. The communi-
cations package I was using before converted the tab charac-
ters in my source code to spaces, MicroPhonell didn’t. Noth-
ing would interpret! I thank the programmer who thought
up Find and Replace! <control> <tab>

Matthew Mercaldo is employed by a huge firm. With a small group, he develops
software tools for field service engineers to do their thing. At 4:30 or 5:00 p.m.,

sets the find portion to locate Tab char-
acters in the find and replace dialog of
Edit)

when the whistle blows, his thoughts race toward the edge. He dreams of articu-

lated six legged walking beasts, electronic brains that can fend for themselves, and

In Review of Max-Forth, a PC and

the stuff of “LL.S. Robots and Mechanical Men.” Someday he dreams of running You

power out to his garage, and with his wife and a select group of friends, opening his
own automoton shop - and thus partially fulfilling his childhood dreams. (Pluto-
nium, Tritium and the like are still not available for public “‘consumption”; but
secing the moons of Jupiter would be spectacular in one’s own starcruiser!)

The Computer Journal / #49

In review, a source file, a communi-
cations program running on a PC, and
Max-Forth running on the F68HC11
single board computer from NewMi-

13



cros are the components required to
develope software on the F68HC11. If
the source file has tabs and linefeeds or
any hidden character in it, they must be
gotten rid of in the editor, or accounted
for in the communications program by
elimination or replacement. Max-Forth
does not want to see these characters in
its incoming interpreter stream of char-
acters. The communications program
should be configured to wait for the
echoed character before sending the
next character, and to send a new line
upon the communications program’s
reception of a line feed character (]).

Forth Assembler, Max-Forth and You

In a previous article TCJ readers
were presented with my bias on assem-
bler, Forth and Forth assembler. With
the information in that article as a base,
the necessary assembler basics for this
project will be reviewed. The basics will
cover Max-Forth’s register usage and
Data Stack manipulation.

The Stack and its Usage

Max-Forth uses a sixteen bit (two
byte) data stack. This means that data
objects must be added to or taken from
the stack in sixteen bit (two byte) incre-
ments. The desired data object on the
stack may only be one byte, but upon
removal, that removal of the data object
must be in a two byte increment. Max-
Forth reserves the use of register ‘Y’ as
its data stack pointer. If the Y register
must be used, make certain that it is
saved going into the assembler routine,
and restored upon exit of the assembler
routine. This can be done by the PSHY
and PULY combination of assembler
words.

The 68HC11 puts the least significant
byte in the high memory location of a
two byte word. In order to access a
character on the stack use the following
as a guide line:

0 ,Y LDD

Listing 1.
COLD
FORGET TASK
HEX
100 1C !
50 1E !
280 DP 1}
DECIMAL
20000 CONSTANT /10MS ( 2000 ticks of free-running counter )
HEX
¢ /10MS @ 026 1 ( Point address 26 at eclock ticks per )
( 10 ms. Contente of 26 was supposed to )
( time writes to EEPROM but version 3.3 )
( F68HC1l has bug-~it uses 26 as a ptr. )
: EE! ( n addr —— )
2DUP & =
IF 2DROP ( was already equal to n )
ELSE
OVER 100 / OVER EEC! 1+ EEC!
THEN ;
( Setting an Interrupt Vector )

Define each interrupt handler using CREATE, so that the name )
of the interrupt handler leaves the address of the code. )
Install the handler into the interrupt vector table by }
<code address> <vector name> VECTOR )

For example, to create pulse interrupt handler: )
CREATE PULSAR )

ASSEMBLER )

<code> )

RTI )

Assume that the interrupt vector for PULSE is at address FEEE in the )
68HC1l. To get the word >PULSE: )
FFFE € CONSTANT >PULSE )

)

Max~-Forth points the interrupt vectors into the 11’s EEPROM

To install the PULSE interrupt handler:
: INSTALL-PULSAR
PULSAR >PULSE VECTOR ;
The system reset code should then execute INSTALL-PULSAR.

: IV ( primary-address <name> -- ; define an interrupt vector )
<BUILDS , DOES> ( —— secondary-address ) e e ;

FFE8 IV >TOC1

¢ VECTOR ( code-addr secondary-vector -—-— ; )
7E OVER EEC! ( put jump opcode )
1+ EE! ; ( put address )

( Registers in the F68HCll's register map )

BOOE CONSTANT TCNT ( Free running timer - 16 bit )
B023 CONSTANT TFLG1 ( Timer Interrupt register - 8 bit )
B022 CONSTANT TMSK1 ( Timer Interrupt Enable register — 8 bit )
B016 CONSTANT TOCl ( Timer output compare register - 16 bit )
0080 CONSTANT OC1F ( Interrupt enable flag bit for Timer one )

DEY DEY ( update the stack pointer for adding)
( a new element )
0 ,Y STD { put a new element from D onto the stack )

The D register is actually the A and B registers combined.
The A register is the most significant byte and the B register
is the least significant byte. With the above operation B will
contain a character if one is to be found on the stack. When
removing an element from the stack, copy the element into a
convenient register and increment the Y register twice.

0 ,Y LDD ( get the stack element into D ;)
( A is msb - B is 18b )
INY INY ( update the stack pointer )

When adding an element to the stack, decrement the stack
pointer twice before adding the element:.

14

This use of the stack can be found in the code found in
listing 2.

Approaches to Inline Assembler

There are two types of assembler words in Max-Forth:
Those that Max-Forth can run from the interpreter, and those
that Max-Forth cannot run from the interpreter. The words
that Max-Forth cannot run from the interpreter are used for
interrupts and routines supporting interrupt handlers. These
interrupt routines are comprised of code put into the Forth
dictionary following a CREATE or CODE Forth dictionary
header definition. For an excellent treatise on the Forth dic-

The Computer Journal / #49



Listing 2.
HEX

( Delay of interrupt ticks before next step state is initiated )
VARIABLE DELAY TIME 10 DELAY_TIME !

( Offset to be added to TCNT -- free running timer -- for next )
( Timer Output Compare interrupt. )
VARIABLE TIMER_OFFSET 100 TIMER OFFSET !

( The Motor Control Block structure. )

000 CONSTANT NEXT MOTOR { Pointer to Next MCB )

002 CONSTANT ACTION ( Pointer to an action to carry out )

004 CONSTANT SENSOR ( Pointer to a sensor action )

006 CONSTANT >>PORT { Pointer to the NMIS 7040 Port )

008 CONSTANT TIMER { Pointer to a timer variable )

OOA CONSTANT STEP_BIT { The active motor bit of the NMIS 7040 )
00B CONSTANT MCB_SIZE { Size of this data structure )

8000 CONSTANT >PORT { Pointer to the NMIS 7040 Port )

CREATE ANCHOR_MCB MCB_SIZE ALLOT The Base MCB for a multiple device
System. Each Device has its own MCB.
Each MCB is linked to another. At a
Regular Heart beat interrupt, this
MCB is used to Reference the rest of
the list of MCBs. The list is
circular so the anchor MCB’s action
will also be fired last. The anchor
MCB’s action is an RTI.

All MCB’s actions must fire before
the next interrupt fires. )

PR

VARIABLE CURRENT MCB ( This is the currently active MCB during the )

( MCB interrupt cycle. )
CREATE FIRST MCB MCB_SIZE ALLOT { The MCB we will use for the NMIS 7040
{ Stepper motor example. )

VARIABLE >_STEP
VARIABLE > WAIT
VARIABLE >LAST ACTION
VARIABLE >SENSOR_ACTION

( Forward References )

( Enable Interrupts; This word enables all Interrupts )
CODE EI ( —- )
ASSEMBLER
CLI
NEXT ~ JMP
END-CODE

( Disable Interrupts; This word disables all Interrupts )
CODE DI ( -- )
ASSEMBLER
SEI
NEXT ~ JMP
END-CODE

( _STEP is an Assembler subroutine that Steps the motor one step )
CODE _STEP ( ~- ; uses X, D ;; Jumps to next MCB’s action )
ASSEMBLER

CURRENT_MCB "~ LDX

( Toggle Step Bit UP )
STEP_BIT ,X A LDA

A ASL

>PORT ~ A EOR

>PORT ~ A STA

( Toggle Step Bit Down )
STEP_BIT ,X A LDA

A ASL

>PORT * A EOR

>PORT * A STA

> WAIT " LDD
ACTION ,X STD
CURRENT MCB * LDX
NEXT_MOTOR ,X LDX
CURRENT MCB * STX

ACTION ,X LDX

)

The Computer Journal / #49

tionary and dictionary header (and
Forth assembler) see Starting Forth by
Leo Brodie. Specifics of the Max-Forth
dictionary can be found in the New
Micros Max-Forth Reference Manual Ad-
dendum. A lot of what is written about
Forth internals in this article is based
on the “Max-Forth Reference Manual
Addendum”. CREATE <name of code
word> or CODE <name of code word>
simply put a header into the diction-
ary. When the <name of code word>
name is interpreted, it puts the address
of the next available byte in the Forth
dictionary (when it was compiled)
onto the data stack (This pointer is
refered to the parameter field pointer
or PFA in Forth lingo). The postfix
Forth assembler starts laying down the
opcodes at this address immediately
after the creation of <name of code
word>. These type of words end in ei-
ther RTI for an interrupt return, or RTS
if they have been called via JSR or BSR.

To Spin a Motor

The code in Listing 2. is our motor
control code. The code is thoroughly
documented. But at times documenta-
tion can only carry the cradle of under-
standing so far. Two concepts are fun-
damental in understanding this model
of stepper motor control. Concept one
is that a regular interrupt “heartbeat”
propels this system. Concept two is
that this system broken into states.
Concept two leads to the definition of
the Motor Control Block (MCB) and
the factoring of states into little--quick
subroutines; one of which is fired on
each regular interrupt.

The Motor Control Block

The MCB is the fundamental data
object in our system. It defines the next
action to take on interrupt. This action
is one of two events for our current
application: stepping the motor or
waiting. The sensor action points to a
subroutine which looks at the sensors
associated with this motor and per-
forms a regular sensor update func-
tion. If an encoder was connected to
this MCB’s motor, the sensor action
would update encoder ticks in a vari-
able within the MCB. The MCB is
where all of this motor’s data is main-
tained. (Just because you don't see it
doesn’t mean it cannot be added). The
address of the motor as connected to
the NMIS 7040 module is maintained
in the MCB, etc.

This MCB is in a linked list of

15



MCBs. With this model, each motor
within the list maintains its own con-
text or all of that data specific to this
motor. Three motors can be run simo-
taneously, while processing other
events--like a communications network
with a master processor by this ap-
proach. The model found here is the
basic model used for asynchronicity in
advanced robotics applications and de-
vice drivers. In the context of this list of
MCBs there exists an Anchor MCB.
This is the first and last MCB. The list is
accessed via the Anchor. The first Mo-
tor MCB is referenced from the Anchor
MCB. The Anchor MCB's action is not
fired first. When all of the MCBs fire
for this interrupt, the anchor MCB's ac-
tion is fired. The Anchor MCB’s action
is an RTI; the way out.

You may seem a little confused
now, especially if you have looked at
the assembler words _STEP and
_WAIT. Remember concept 2 from
above. The motor run instance needs to
be broken into states. The goal of this
article is to spin the motor.In order to
spin a motor the motor needs to be
stepped. Two states are required to
step the motor. State one _STEPS the
motor, state two _WAITSs for the motor
to settle. Since this thing is based on
the heartbeat or timed interrupt, the
settle time must be controlled. (In the
next article we will control the settle
time to accelerate and decelerate the
motor). If the motor were to step on
each interrupt (32 milliseconds apart),
the motor would chatter. This articles
goal is to spin the motor--chattering
will not do. While in the WAIT state,
each interrupt decrements this motor’s
TIMER found in the MCB. When the
settle time has elapsed as per TIMER,
the state is changed to _STEP and the
timer is reloaded for the next WAIT
state.The next time around, the motor
will be stepped, and the state set back
tothe WAIT state.

The Next time around?

I hope the confusion is becoming
less confusing.. Lets look at the se-
quence of code which completes each
state.

CURRENT MCB " IDX ( get currently )

( active MCB in X )
NEXT MOTOR ,X LDX ( get the ‘‘next )
MCB to fire’’ in X)
thru this MCB )
make the ‘‘next )
MCB to fire’’ the )
current MCB )

continued page 38

CURRENT MCB " STX

— e~~~ -~

16

0 ,X aMP
END—CODE
* _STEP CFA @ >_STEP !

( Waits a specific time between steps )

CODE _WAIT ( -- ; uses X, D ;; Jumps to next MCB'’s action )
ASSEMBLER
PSHY { Save Max-Forth’s data stack pointer )

CURRENT MCB " LDX
TIMER ,X LDY DEY
EQ IF
DELAY TIME " IDD TIMER ,X STD
> STEP ~ LDD ACTION ,X STD
ELSE
TIMER ,X STY
THEN

PULY ( Restore Max-Forth’s data stack pointer )
CURRENT MCB " LDX
NEXT_MOTOR ,X LDX
CURRENT _MCB " STX

ACTION ,X LDX
0 ,X JMP
END-CODE

‘ _WAIT CFA @ > WAIT !

( The last MCB‘s —- Anchor MCB’s -— action )
CODE LAST ACTION { —— ; Returns from processing interrupt )
ASSEMBLER
RTI
END-—-CODE

* LAST ACTION CFA @ >LAST ACTION 1

( A stub for future sensor update actions;; i.e. encoders, etc. )
CODE SENSOR_ACTION ( == ; Must be called via JSR )}
ASSEMBLER
RTS
END-CODE

SENSOR_ACTION CFA € >SENSOR ACTION !

Output Compare Timer Interrupt handler routine Specific to Output )

Compare Timer 1 )

This Interrupt Routine will process the list of MCB's.

The list must be circularit! ANCHOR -> FIRST -> ... -> LAST -> ANCHOR

The Anchor MCB’s action must end with an RTI.

All other MCBs must get the next MCB’s action and execute it:

Effectively..

... NEXT_MOTOR ,X LDX ; Get next MCB in list into X

CURRENT MCB " STX ; Hold onto this in CURRENT_MCB for next routine

ACTION ,X LDX ; Load a pointer to the Next Mcb’'s Action into X
i
)

PP
e

0 ,X JMP Execute Next MCB’s Action
( Sets up to the next MCB
CREATE ~MOTOR_HANDLER ( —— ; uses X, D ;; Processes list of MCB's )

ASSEMBLER
OC1F # A LDA
TFLG1 *~ A STA

{ Acknowledge Interrupt. )

TCNT * LDD Set Up for next interrupt )
TIMER OFFSET " ADDD ( based on Interval from TIMER OFFSET. )
TOC1 * STD

-

ANCHOR_MCB # 1DX ( Get Anchor )
NEXT_MOTOR ,X LDX ( Get First Motor from Anchor )
CURRENT_MCB " STX Set as first Motor )

-—

ACTION ,X LDX
0 ,X JMP

( Do First Motor’s Action )

( End of ~MOTOR_HANDLER )

s INITIALIZE_MOTOR ( —— )
( Connect last block to itself and connect last action )
ANCHOR_MCB ANCHOR MCB NEXT_MOTOR + !
>LAST ACTION @ ANCHOR MCB ACTION + 1
( set the interrupt vector )
~MOTOR_HANDLER >TOCl VECTOR ;

The Computer Journal / #49




Controlling Home Heating and Lighting

A Personal Embedded Controller System

By Jay Sage

Although most TCJ readers are familiar with my regular-
column on Z-System software, [ actually got my start in mi-
crocomputing with controllers. Ever since editor/publisher
emeritus Art Carlson began asking for articles on embedded
controllers, 1 have thought about describing my very first
computer project, an Intel 8085-based controller that has been
operating the heating and lighting systems in my house for
the past decade.

Background

In the late 1970s I was working in Raytheon Company’s
Research Division developing charge-coupled devices
(CCDs) for analog signal processing. To facilitate the meas-
urement of field-effect semiconductor devices, I designed a
number of test boards that used analog integrated circuits
(especially operational amplifiers) and small- and medium-
scale digital logic circuits.

At the time, Raytheon sponsored some Summer short
courses at Cornell in various electrical engineering subjects.
One of them was an introduction to the then new micropro-
cessor chips. In return for its support, Raytheon was allowed
to send one employee to attend the course. I was offered the
opportunity; it sounded like fun, so I accepted. I enjoyed that
course so much that on my return [ started immediately on
the design of a microprocessor-based system that would op-
erate the electrical circuits in our house.

Why did I choose that application? A couple of years ear-
lier, our house had been broken into, and to discourage bur-
glars from a repeat performance, we put clock timers on half
a dozen of our lamps. It was quite a nuisance, however,
when a timer would turn off the only light in the room and
we would have to craw] around on the floor in the dark
trying to find the timer. The computer controller would make
life easier by working in parallel with the regular light
switches.

In addition, we were still in the aftermath of the 1973 oil
crisis, and I thought we could greatly reduce our oil con-
sumption by having the computer controller operate the elec-
trical circuits in the heating system. Ultimately, this is where
the system has really been productive.

It is going to take a couple of columns (at least) to describe
this whole project. This time I am just going to lay the
groundwork; next time I will get into the details of the com-
puter circuit. Although the circuit was designed and built
more than ten years ago, and I would do a number of things
differently today, the basic concepts are, I think, still sound
and instructive.

The Computer Journal / #49

The Basic Functions

The functionality of the controller that is visible to the user
is basically a flexible scheduler. It stores the day and time
when actions are to take place. It also knows about various
conditions, such as whether we are at home or away and
whether it is an ordinary day or a vacation period. Scheduled
events can depend on combinations of those conditions.

Two kinds of actions are supported: (1) turning electrical
circuits on or off and (2) setting the thermostat for the heat-
ing system. Electrical circuit switching is actually controlled
in two ways. The obvious way involves turning circuits on
and off at specific wall-clock times. A second stored schedule
turns circuits on and off at times relative to the onset of dark-
ness outside, as determined by monitoring a photocell. I gen-
erally turn lights on based on outside brightness and turn
them off based on wall-clocktime. In this way, the schedule
does not have to be revised with the change of seasons. Also,
lights will turn on automatically during dark rainstorms (and
off again when the storm clears).

We will share more specifics about the operation of the
controller next time. For now we will continue with a discus-
sion of the internal control strategy used to operate the heat-
ing plant.

Heating Control Concept

Our house, like many in New England, uses an oil-fired-
boiler to heat water that is circulated by a pump through
radiators (cast iron in our case). A thermostat senses the air
temperature and turns on the circulator when the room air
drops below the set temperature.

The temperature of the water in the boiler is similarly
regulated by what is called an aquastat. While the thermostat
could be set back at night, either manually or automatically,
the aquastat always has a fixed setting. In order to ensure
adequate heat on the coldest day possible, the water tempera-
ture is generally kept at a very high setting, perhaps 180 de-
grees Fahrenheit (80 Celsius). Day and night. Warm weather
and cold.

And what does all the hot water in the boiler do while it is
sitting around waiting to be circulated to the radiators? Well,
for one thing, it leaks its heat into the basement. Our base-
ment being unfinished, this is nearly a complete waste. Sec-
ond, it sets up a nice convection up the chimney. This liter-
ally sucks heat up the chimney, cooling off the water in the
boiler and drawing fresh cold air into the house. More waste!

Besides being inefficient, this control strategy also pro-
vides less comfort. After the air in the house cools, the circu-
lator comes on, bringing very hot water into the radiators,
which then transfer their heat into the air. Soon the room has

17



warmed up and the circulators shut off. But, the radiators are
still nice and hot, and they keep pouring heat into the room.
The room gets much hotter than the thermostat setting, and
during the long cooling down time with no heat, the rooms
tend to have cold drafts. Not very nice!

The best thing to do, I thought as a physicist, was to con-
trol the water temperature so that the radiators were at just
the right temperature to transfer heat into the air at the exact
rate heat was leaking out of the house. The circulators could

"run continuously. On warmer days and at night, when the
thermostat setting was low, the boiler water would be quite
cool, and the losses, both into the basement and up the chim-
ney would be much less. Also, there would be almost no
swings in air temperature, and the steady low-level heat
from the radiators would inhibit drafts.

Simple, linear heat conduction theory implies that the
boiler temperature would have to exceed the desired (and
actual) air temperature by some factor times the amount that
the air temperature inside is to exceed the air temperature
outside, that is

(Tb-Ti ) =K * ( Ti - To )
or
T =(K+1)*Ti- (K*To)

where Tb is the boiler temperature, Ti the inside air tempera-
ture, and To the outside air temperature. The factor K de-
pends on the amount of insulation in the house and the effec-
tiveness of the radiators (big cast iron radiators are great;
baseboard units are pretty poor).

More Sophistication

Once one has a microprocessor running things, one might
as well really put its processing power to work. I, therefore,
applied some more sophisticated control strategies on top of
the basic one described above.

If the aquastat is set exactly at the temperature required to
‘maintain the steady-state air temperature desired, then there
will be no excess capacity to allow the house to warm up
when the thermostat setting is increased. Therefore, an addi-
tional correction is included in the aquastat setting in propor-
tion to the difference between the desired air temperature
and the actual current air temperature. The equation thus be-
comes

Tb = (K1 + 1)*Ti — (K1 * To) + K2*(Ts - Ti)

where Ts is the thermostat setting.

Adding this term has several benefits. It allows the house
to warm up during programmed increases in temperature
(Ts-Ti > 0), as we just said. It also allows the boiler to remain
extra cool during programmed decreases in thermostat set-
ting (Ts-Ti < 0). Finally, it enhances the stability of the system
against errors in the control parameters.

Cycling an oil burner on and off is not good for efficiency.
During the first several minutes of a burn, while the combus-
tion chamber (fire box) is still cold, the oil does not vaporize
well and, therefore, does not burn as well. There is less heat
and more soot, which builds up on the heat exchanger and
impedes heat transfer into the water.

The best thing would be to have a variable-firing-rate
nozzle. Then one could keep the flame on continuously and
regulate its heat production to match exactly the leakage rate
from the house. Today there are gas-fired boilers that work

18

somewhat this way. As far as I know, this has never been
done with oil. I suspect that burning oil is a tricky process
and that nozzles are carefully optimized for a particular flow
rate. Building an efficient variable-flow-rate nozzle may not
be feasible.

My compromise was to use a nozzle that provided just a
little more heat than would be needed on the coldest possible
day. Experiments showed that I could change to a nozzle
with only half the flow rate of the one that had been in the
boiler! With a small nozzle, firing times are longer, and the
inefficient burn time is a smaller fraction of the total burn
time.

Naturally, we want the house to be quite cool at night,
and there is no sense keeping the boiler warm during that
time. Therefore, the controller is programmed so that when it
sees a decrease coming in the desired air temperature, it
automatically decreases the aquastat setting and allows the
radiators to extract as much heat as possible. Typically, by
the time we go to bed at night, the boiler is down to only
about 25 degrees C, barely above room temperature.

This in turn introduces a new problem. With the boiler so
cold overnight and such a low firing rate, if the system
waited until the thermostat setting came back up to turn on
the boiler, it might be many hours before the house would
catch up. The controller is, therefore, made to look ahead and
to compute the time to begin firing so that the house tem-
perature reaches a future programmed temperature at ex-
actly the time it is programmed for. On a really cold day, the
bailer begins firing three or four hours ahead!

Normally the boiler is cycled on and off in response to the
computed aquastat setting. If one used a single temperature
set point, of course, the oil burner would turn on and off
frequently, so, as with standard mechanical thermostats and
aquastats, some hysteresis is included to stabilize this. In
other words, the turn-off setting is slightly higher than the
turn-on setting.

In addition, since the early firing of the burner is less
efficient, the controller is programmed to give a minimum
burn time, once firing has started, independent of aquastat
setting. | figured that it was better to have the water slightly
hotter than necessary sometimes rather than have short burn
times. Water condensation in the cool chimney and boiler
parts could lead to corrosion. The minimum burn time was
chosen to ensure that the boiler flue temperature would
reach at least 100 C.

There is a worry one always has with a circulating water-
heating system--freezing. If there is a pipe near an outside
wall, and if the circulator is off for a long period of time, and
if the weather is very cold, a section of the pipe may freeze
and possibly burst. This makes for quite a mess (especially if
you haven’t disabled the automatic water filling system, as I
have). To prevent freezing, the software turns on the circula-
tor for a short period of time after a maximum off interval
even if no heat is needed.

As | mentioned earlier, with the control strategy imple-
mented here, the circulator can run nearly continuously. In
fact, that is exactly what happened with an early version of
the software, and we noticed a substantial jump in our elec-
tric bill because of the energy consumed by the motor.

I then reasoned that it should be adequate to turn on the
circulator only long enough to exchange the stug of water in
the radiator for a new, warm slug of water. So long as the

continued page 36

The Computer Journal / #49



Getting Started in Assembly Language

Making the Jump from High Level Languages

by A. E. Hawley

Why would anyone who programs in a high level lan-
guage (HLL) want to learn assembly language, especially
considering its reputation as “difficult and too detailed?”
One reason is precision, another is power. Given program-
mers with equal skills, a program written in assembly lan-
guage will be both faster and smaller than one written in a
high level language. Can you think of a way to write a pro-
gram which will load and execute at the highest available
location in memory without disturbing one in low memory?
You can do it with a good assembler and linker. It is very
difficult to do in most high level languages.

John Poplett, as sysop of the “Plaster of Paris BBS”, ca-
tered mainly to writers and literature buffs. John himself was
a technical writer who had learned BASIC, gotten acquainted
with ZCPR3, and had set up his BBS with the venerable RBBS
system. He was a frequent caller on my Z-Node, always ea-
ger for the latest utility updates. We chatted often about the
workings of the CP/M operating system and ZCPR3. One
day, he decided that he needed to be able to understand in
much more detail how things worked. He wanted to learn
AL (Assembly Language) and wanted some advice on how
to go about it. He picked a goal, and six months later the first
version of ZLUX was released.

This article includes the advice that John Poplett used in
his climb from “rags to riches” (intellectually, at least). It is
introductory, intended for the average user familiar with one
or more high level languages. Perhaps you, too, want to un-
derstand AL programming.

What do you need to get started? You probably already
have some of the software lurking in your archives. You will
need an editor, an assembler, and a debugger. Of course, if
you never make misteaks you have no need for a debugger,
wright?

Choosing an Editor
If you have done HLL programming, then you have an
editor and will prefer it. The main requirement is that the

editor be used in a mode that produces straight ASCII files.
Assemblers just can’t cope with the meaning of formatting
commands and embedded control characters. Many pro-
grammers use Wordstar in the non-document mode. An ex-
cellent public domain editor that uses the Wordstar com-
mand syntax is ZDE, by Carson Wilson. ZDE is much faster
than Wordstar because it does not page its files to and from
memory. Wordstar (or some other) must be used if your file
becomes too large to fit into available memory. 1 started
years ago with MATE, graduated to PMATE and then to
ZMATE. If you need to buy an editor for programming use,
ZMATE is the one | recommend.

Assemblers

The assembler you use should be a relocating macro as-
sembler that accepts Z80 mnemonics and can produce HEX
and Microsoft REL output files. Bruce Morgen (reference 3)
compares assemblers and linkers from DRI, Microsoft, and
SLR. The DRI RMAC assembler, as he points out, uses Intel
8080 mnemonics but is otherwise acceptable. Through use of
the public domain Z80.LIB, RMAC can be made to produce
Z80 code but at the expense of non-Zilog mnemonics. The
differences make your source file incompatible with assem-
blers that use Zilog mnemonics. If you use RMAC, be aware
that you will have some translating to do when you try to
assemble files (from the public domain, for example) written
in Zilog mnemonics.

Bruce did not include the ZMAC assembler and ZML
linker in his review because they were released a year later.
ZMAC uses Zilog mnemonics, is CP/M compatible, uses
ZCPR3x if it is present, and has a superset of M80 capabili-
ties. It is the only Z80 assembler that is currently actively
supported. This assembler handles HD64180 as well as Z80
instructions. ZMAC is much faster than M80 and about the
same speed as the SLR assemblers in their two-pass mode.
The ZML linker makes the generation of PRL and SPR files as
simple as a command line option and can easily produce RSX
files. Similarly, making ZCPR34 Type 4 files is a function that

you simply invoke. Type 4 files execute

A. E. (Al) Hawley started out as a Physical Chemist with a side line love of
electronics when it was still analog. He helped develop printed circuit technology,
and contributed to several early space and satellite projects. His computer experience
started with a Dartmouth Time-Share system in BASIC, FORTRAN, and ALGOL.
His first assembly language program was the REVAS disassembler, written for a
home-brew clone of the Altair computer. As a member of the ZCPR3 team, he helped
develop ZCPR33 and became sysop of Z-Node #2. He has contributed to many of the
ZCPR utilities, and written several. He is author of the ZMAC assembler, ZML

linker, and the popular ZCNEG utility.

The Computer Journal / #49

at the highest possible memory ad-
dress, just below ZCPR34.

If you have ZAS/ZLINK, go ahead
and use them until you can get some-
thing better. They have some “fea-
tures” that will eventually make you
wonder if you really understand as-
sembly programming! (be assured, you
do..)

I have all of the above. Naturally, 1

19



use ZMAC most of the time. Z80 source files written for M80
can be assembled by ZMAC or the SLR assemblers. | reserve
RMAC for those public domain programs written for it when
I don’t want to bother with translation to Z80 mnemonics.

Debuggers

Bruce Morgen also reviewed debuggers. He reported DSD
as the premier Z80 debugger. | have it, use it regularly, and
agree that there is nothing finer in its field except its big
‘brother Remote DSD. DSD is indeed available. Sage Mi-
crosystems East can supply it, as well as ZMATE and
ZMAC/ZML.

You will find a symbolic debugger program very useful.
Symbolic debuggers use the symbol table produced by link-
ers to allow you to single-step through the executing code,
displaying the state of all registers and memory contents in
terms of the symbols you assigned in your source code. A
good public domain debugger, available on many remote
access systems, is Rick Surwilo’s Z8E. This symbolic debug-
ger, like DSD, is screen oriented, versatile, and of profes-
sional quality. Cam Cotrill, one of the authors of ZSDOS,
used Z8E on many software development projects until he
discovered DSD.

Things You Need to Know

Now you have the basic software tools, and you have read
the instructions provided with them. (You have read them,
haven’t you?) What else is there? Assembler documentation
usually assumes that you are familiar with the basic mathe-
matical, logical, and physical principles on which the opera-
tion of your computer is based. This awareness is the guide
that you use to select and organize the instructions that com-
prise an AL program. Here’s a list of subjects that are impor-
tant:

How a CPU works

Architecture for Z80, Z180/HD64180

Data, Address, Control lines

Machine commands and Machine language programming
How information is organized in a computer

Bits, Bytes, Words, Addresses, and Memory organization
How data is manipulated

Binary arithmetic--Add, Subtract, Multiply, Divide, and

SHIFT

Boolean algebra--AND, OR, XOR, NOT and Truth tables
Assembly language programming

Assembler Mnemonics

Assembler Pseudo-ops. How they differ from Mnemonics

How a CPU Works

The final answer to questions about how a microprocessor
works is contained in the manufacturer’s data sheet. Refer-
ences 1 and 2 point you to the right phone numbers to call to
get the data sheets for the Z80 and its newer brother the
HD64180 (Z180, from Zilog). Some electronic supply houses
can also supply these. In either case, be pleasantly surprised
if they are free. You should have one of these in your library,
depending on the CPU your computer uses. Books on pro-
gramming contain the same information, paraphrased and
edited.

Machine Language Programming
The first widely available microcomputer was the Altair.

It had a front panel with rows of LED lights and switches.
The LEDs monitored the CPU control bus, the data bus, and
the address bus. Sixteen of the switches were used to specify
the address for the next operation. Eight of these switches
provided data for the data bus. Other switches controlled
running, stopping, single stepping, and storing data bus con-
tents at the current address. With this primitive setup, the
user could store bytes contiguously in memory to form an
executable program, then execute the program in single step
or run mode. Typically, the very small program so tediously
entered would simply read bytes from an /O port and de-
posit them in memory. When done reading, a jump instruc-
tion caused the new block of code to be executed, and voila!
BASIC, or a monitor, or simple editor/assembler came alive.

Your computer starts up the same way! The front panel
has been replaced with two switches: the power switch, and
the Reset button. The initial bootstrap code is in ROM, auto-
matically invoked when power is turned on or the reset but-
ton pushed. With all debuggers, you can simulate the origi-
nal method of programming without getting calluses on your
fingers. You use the “S” command to enter bytes where you
wish in memory. You specify the bytes in hexadecimal, but
some debuggers allow you to specify them in binary or AS-
ClII as well. Then you can use the “GO” command to execute
the code, or a “T” to single step through the code. At any
point, you can observe the contents of the CPU registers and
memory locations. This is the first step toward a high level
language. An assembler is the second step.

Bits, Bytes, Words, and Addresses

Your computers CPU processes data using byte-based bi-
nary boolean logic operations, shifting operations, and copy
operations. Integer arithmetic operations are actually micro-
programs within the CPU, and are executed like the ex-
amples of binary arithmetic you can do by hand (the long
hard way). Single-bit operations can be visualized as boolean
byte operations in which bits other than the bit being ad-
dressed are either unaffected or are all set to either 0 or 1.

The CPU logic operations provided are AND, OR, XOR,
and NOT. The NOT operation masquerades in the CPL in-
struction, which simply inverts all the bits in a byte. The
arithmetic operations are ADD and SUBtract, with variations
depending on the treatment of the carry bit and extension to
operations on 16 bit words.

If you are at all hesitant about these subjects, by all means
look to books like references 7,8, and 9. The Intel 8080 Assem-
bly Language Programming Manual (reference 10) discusses the
arithmetic and logic instructions in great detail, illustrating
them clearly in binary. The Zilog and Hitachi publications
assume that you are already familiar with such basic theory.
The owners manual for the Altair computer (if you can find
one!) contains a clear discussion of these principals although,
of course, it is limited to 8080 instructions. The Z80 had not
yet been developed!

From Machine Language to Assembler

In the first step toward higher level programming manual
operations (flipping switches) are replaced in the debugger
by much less tedious typing of hex bytes. A second level of
abstraction occurs when you use the simple in-line assembler
that most debuggers contain to enter the mnemonics for ma-
chine instructions (like LD A,0). Note that numeric values

continued page 37

The Computer Journal / #49



REAL COMPUTING

The PC-532, Minix 1.5, and the 32GX320

By Richard Rodman

My PC-532 is up!

The basement is small, but that’s no obstacle to its looking
like the lab from Bride of Frankenstein. A web of cables blan-
ket the floor. The patient lays atop a makeshift table. Meters
and probes are precariously balanced over the exposed cir-
cuitry, bathed in the cold phosphorescent glow of the moni-
tors. He sweats as he tirelessly moves his probe from point to
point-no signal, no signal, no, ... “More POWER! | need more
POWER!”’

A sudden flash of lighting silhouettes him against the
casement windows. An LED flickers! The monitor stirs! He
jumps up and throws open the window. “It's ALIVE!” he
screams into the dark rain that pelts him in the face. “It's
alive.” He stands, laughing and sobbing, soaked by the rain,
as the lighting flashes, the thunder booms.

What can match that supreme joy, that feeling of sublime
affirmation, that incredible, indescribable pinnacle of
achievement when the object of one’s simultaneous bound-
less love and bottomless hatred, one’s most enticing tempt-
ress and fiendish enemy, after hours, days and months of
unflagging pursuit, untold perils and changes of strategy,
finally gives in and works!

What I’'m getting to is that my PC-532 is now up. It was
actually a struggle more against ambiguous documentation
than anything else. For one thing, there are 8 SIMM sockets.
To install only 4 SIMMs, you use the even-numbered (every
other) sockets. For another thing, the console connector is J3.
The documenter must have assumed that these facts were too
obvious to merit inclusion in documentation, but he forgot
the first law of documentation: Nothing is obvious.

Anyhow, the PC-532 has the greatest ROM monitor I've
ever seen. It was written by Bruce Culbertson and includes--
get this--on-line help! In these days of cheap ROM, it’s about
time. The monitor supports breakpoints, single-step, instruc-
tion disassembly, and a lot of other nice features. It includes
a simple binary download protocol. It was a simple matter to
modify my HOST program to support this protocol too. Us-
ing this downloader, following Bruce’s instructions, I was
able to set up a RAM-disk and bring up Minix 1.3 on the PC-
532.1 don’t have any disk on the system as yet, however.

By the way, a couple of issues back | mentioned that the
OMTI 5200 board is available, but left a funny symbol as to
who it was available from. Actually, this is an older control-
ler. A newer model, the 7200, is available from Arrow Elec-
tronics. There are some variations in different models. The
model 7200 can interface up to 4 floppies and 4 MFM hard
disk drives to the SCSI bus.

Getting back to the monitor, it's made up of a combina-
tion of assembly and C. Bruce has been using GCC (the Gnu-

The Computer Journal / #49

C compiler) which he has running under Minix. [ haven’t
been able to rebuild it as yet using the tools | have available,
but would suggest that this monitor would be better than
SRM or TDS as a standard for home-brew NS32 systems.

Minix 1.5

Minix 1.5 is no academic exercise. This is a full-featured
operating system, with more system calls and utilities than
version 7 Unix. It runs quickly and smoothly, supports all the
various floppy formats of the PC, and is well documented.
It's actually even better than I expected it would be. It came,
in my case, on 12 720KB 3-1/2" floppies.

It’s almost amazingly audacious to come out with a pro-
gram available on the PC, the Atari ST, the Amiga and the
Mag, all at the same time--but an operating system! It's a
potential customer support nightmare. A mere word proces-
sor has a cushion of device-independent code under it; an
operating system has to work right on the bare metal, and
some pretty quirky bare metal it is, too. But they’re doing if;
call them at the numbers below if you have trouble. Obvi-
ously, OS hackers are made of better stuff than your average
1-2-3 user. It appears from Usenet that Mac users have had
some difficulties running Minix under Multifinder. [ had two
bad floppies, which Prentice-Hall replaced cheerfully. But, at
least on the PC, this is a very stable product.

To misquote Stan Kelly-Bootle, into each china shop some
bull must fall. I had some problems with Minix 1.5. After
going though 8 pages of installation procedure in which, all
along, they assure you it can be installed with the hard disk
as the root (not using a RAM-disk), the setup_usr shell script
cannot dismount the hard disk, so it won’t execute, and the
software can’t be installed. This means that you have to start
completely over and re-partition the hard disk. Remember:
you must use a RAM-disk.

On the bright side, Minix’s fdisk program is tremendously
better than DOS’s. Having used it, | wonder how Microsoft is
getting away with nationwide distribution of such a shlock
partitioning program. DOS’s FDISK is cumbersome, limited,
confusing, error-prone, and clunky, and hasn’t been im-
proved at all since they came out with it 5 years ago. They
ought to be ashamed.

Minix also includes a network driver for the Amoeba
protocol. It includes drivers for a couple of common Ethernet
boards. This means that networks of Minix systems are now
possible. And, of course, source is included. About all you
don’t get is X window. The way things are going, someday
maybe AT&T will brag about having a Minix-like operating
system.

21



More information on the 32GX320

I've received some more information on the new proces-
sors in what is now called the Series 32000/EP. First I'd like
to go into what I think is the more amazing of the new chips,
the 32GX320.

As mentioned before, this chip is a superset of the
32GX32. It does not have, nor support, a memory manage-
ment unit. It does have an on-chip interrupt controller, DMA
controller, and some new instructions. It also has some hard-
. ware assistance for existing instructions.

The on-chip interrupt controller is not as fancy as the
32202, but it has what most people need. It includes 3 16-bit
timers. The logic is mapped into memory at FFFFFEOQ and at
FFFFF800 (don’t you love these 32-bit addresses?). The timers
can count external signals and can also generate system tim-
ing outputs. The data book (it can hardly be called a ““sheet”)
notes that “from the CPU standpoint, the on-chip ICU can be
regarded as an independent module.”

The DMA controller has two identical and independent
channels. Each of these are capable of operating in several
modes. The fastest mode is what is called “flyby”” mode. In
this mode, both an I/O device and memory are selected si-
multaneously, and the data is transferred in a single bus
cycle. DMA controller channels may also be used for trans-
ferring memory blocks within the system. The DMA control-
ler is mapped into memory at FFFFF010 and up.

How about the new instructions? The first one is
MULWD, a 16x16 multiply which is functionally the same as
MULW, but around three times as fast (200ns). MULW is still
available if you want to use it. The next is CMULD, complex
multiply double. The two operands of this instruction are 16

bit real part in the low-order word, and 16 bit imaginary part
in the high order part. The result (32 bits each real and imagi-
nary) does not replace either operand but goes in registers RO
and R1. Another complex math instruction is CMACD, com-
plex multiply and accumulate double, which is like CMULD
except the results are added to the previous RO and R1 con-
tents. Finally, there’s MACTD, multiply and accumulate
twice double, which is a kind of vector dot product.

Shift instructions on the 32GX320 are sped up by a barrel
shifter. There’s no new instructions, though; the normal in-
structions just run faster.

The chip is available either in a 208-pin flat pack or in a
175-pin PGA. No, it’s not pin compatible with the 32532 or
the 32GX32. The data book number is item 114303. This is a
hot chip. Let’s hope National can get a bunch of these into
the hands of experimenters out there.

Next time

Next time, we'll have the details on the 32FX16 and a
couple of other fax-related products. Plus, the old dog’s next
new trick: the 486 has a crude cache. In the meantime, when
you hear someone describe their product as “open”, keep
your eyes open and your wallet shut.@

Where to write or call

Minix: Prentice-Hall Voice: 1-800-624-0023
Microservice Customer Service 1-201-767-5969
Simon & Schuster BBS: 1-703-330-9049
200 Old Tappan Road

Old Tappan, NJ 07675

Software Specialist W

Custom Software Solutions for Industry:
Industrial Controls
Operating Systems
image Processing

Custom Software Solutions for Business:
Order Entry
Warehouse Automation
inventory Control
Wide Area Networks

Publishing Services:
Desktop Systems

Llﬁ William P Woodall -

Hardware Interfacing
Proprietary Languages
Component Lists

Point-of-Sale

Accounting Systems
Local Area Networks
Telecommunications

Format Conversions

Books Directories
CBT Interactive Video
33 North Doughty Ave, Somerville, NJ 08876 - (908) 526-5980 J
— — %

The Computer Journal / #49



Z2-SUS...
Z-System

Software Update Service

Bringing the Z-System World Closer Together.

Once upon a time, before the coming of the Corporate
Market, microcomputers were not just owned by
individuals. They were built and programmed by
individuals. We were an ignorant lot back then. We never
thought to ask if a machine could do something--we just
plugged away at the task until it did! Those innocent days
are gone forever, replaced with $500 text editors, exploding
windows in gaudy colors and simple utilities expanded
past 100k in object _form. There is no room for the
individual anymore.

Or is there?

\

The Computer Journal / #49 A-1




Z-SUS...

Z-SUS Catalog Disk:

An in-depth catalog of Z-SUS offerings, available only
on disk. Besides providing you with a detailed explana-
tion of every service and package we offer, the Z-SUS
catalog disk also includes the most current copy of
ZFILEV.LST by Bill Tishey. To this, we've added Gene
Pizzetta’s XFOR.COM, adapted and renamed to DF.COM
(Describe Files). Use it to look up the name of any Z-
System tool by any criteria you wish. For example, to find
files relating to shells, you would enter:

AO0>DF SHELL

Now you can quickly search for just the tool you need

to solve any problem at hand.
Price:
Foreign Shipping Surcharge:

$2.00
2.00

Z-SUS Subscription:

The guaranteed way to stay up-to-date with the latest
public domain Z-System software. Most include source
code. The subscription disks are issued approximately
once per month. Start your subscription at any point you
like. Just tell us on your order form where to begin.

We are always looking for good software. If you know
of a release deserving worldwide distribution, send it in!

Price, 12 issue subscription.  $72.00

Price, 6 issue subscription: 48.00

Foreign Shipping Surcharge':  24.00 (12 issues)
Foreign Shipping Surcharge':  12.00 (6 issues)

Z-SUS Disks, ordered individually:

These are the disks that subscribers receive approxi-
mately once a month. Order just the disk you want! Or
putin a subscription to begin on any issue to receive that
issue and the following 5 or 11 (depending on length of
subscription you select).

Price per issue (1 to 3 issues): $10.00

Price per issue (4 to 9 issues)2  9.00
Price per issue (10 or more)2: 7.50
\Foreign Shipping Surcharge*: 2.00 per disk

Bringing the Z-System World Closer Together.

Reenter the exciting world of truly personal computing.
The cost is small: a Z80 computer, a new operating
system and time. Learn what others have never forgotten,
that the spirit of the individual made this industry.

Z3COM Package:

A full set of executable (COM) files supporting ZCPR3
and the Z-System. The package consists of 456 files total-
ing 1,564+k, as of January 1, 1991. It comes on six DSDD
disksin a collection of libraries. The Z3COM Package con-
tains earlier programs designed to run under ZCPR 3.0
and 3.3 as well as the newest utilities supporting NZCOM
and ZCPR 3.4. It includes some essential general CP/M
programs such as ARK, UNARC, CRUNCH, UNCR and
NULU as well. You will be amazed at the treasures to be
found in this collection!

Price:
Foreign Shipping Surcharge':

$36.00
4.00

Z3HELP System:

The Z3HELP System consists of a set of libraries con-
taining on-line help for nearly all available Z-System pro-
gramsand utilities. Itis designed to work with LBRHELP.
Examples are given to assist you in installing this compre-
hensive system. Updates are published in each issue of
the Z-SUS subscription disk.

At the present time, the Z3HELP System contains well
over 1 Megabyte of compressed files and is distributed on
4 DSDD disks. This is one of our most popular packages.

Price: $20.00
Foreign Shipping Surcharge': 3.00

TCJ Articles:

A collection of articles written by Jay Sage, Bridger
Mitchell and othersrelating to Z-System as printed in The
Computer Journal. We encourage you to subscribe to
TCJ, the only general circulation magazine offering strong
support to CP/M and Z-System, and offer this collection
to show the quality of articles. Distributed with permission
on two DSDD disks.

Price:
Foreign Shipping Surcharge':

$10.00
2.50

J

A-2

The Computer Journal / #49



And the Best New Software Closer to You!

And let us help guide the way. Z-SUS keeps Z-System
users around the world updated on the newest public
domain software--the heart, and soul of personal

computing.

Z-SUS Programmer’s Pack:

A comprehensive collection of tools for the Z-System
programmer. This set of 8 DSDD disks includes all the
official Z-System Libraries, as well as essential utilities,
modules and routines which today’s Z-System
programmers and developers find most useful. Both
Microsoft and SLR formats of the official REL files are in-
cluded. (Note: source code for the Libraries is proprietary
and could not be included). You receive complete
documentation, on-line help and the full release LBR files
forallincluded tools: everything needed to join the ranks

of Z Programmers!
Price: $48.00
Foreign Shipping Surcharge' 5.00

Custom Order Disks:

Need something from the past? If it is listed in
ZFILEV.LST, then the Z-SUS Custom Order Disk service
can get it for you! Best yet, the priceis per disk, not per file!
Just be sure not to exceed your disk capacity. Order full
release LBR files only. Sorry, no discounts on this labor
intensive service.

Price: $10.00 per disk thank you! You are the very heart of Z-System.
Foreign Shipping Surcharge: 2.00 per disk
Ordering Information

!Foreign Shipping Surcharge: Prices shown are for orders to the US, Canada and Mexico. All others must add
shipping surcharge. Sorry, surcharge is not subject to discounts as it reflects actual costs we incur in processing

your order.

?Z-Node Sysop Discounts: Z-Node sysops receive a 50% discount from standard rates on all Z-SUS products
except Custom Order Disks. Multiple-disk rates on individually ordered Z-SUS subscription disks and foreign

shipping surcharge not subject to discount.

Note to Amstrad Owners: Due to high cost of disks, a surcharge of $5 per disk must be imposed. This is waived if
you supply your own formatted disks in either 48-tpi or 96-tpi formats.
Formats Available: We support nearly all 5.25 inch CP/M formats, both 48-tpi and 96-tpi, as well as 8 inch. Please

inquire regarding hard sectored formats.

&Iethod of Payment: Payment must be in US funds drawn on a US bank.

Z-SUS Word Processing Toolkit:

This package contains Z-System programs and utili-
ties useful in text and word processing. Classics such
as Carson Wilson's ZDE are included as are tools and
tips for handling and printing text in its many forms.
You even get a full-blown spelling checker! Over a
megabyte of software distributed on four disks. Special
thanks to Carson Wilson, Gene Pizzetta and Lee Bra-
dley for input to the selection of files for this package.

Price: $20.00
Foreign Shipping Surcharge' 3.50
A Note of Recognition:

The many files that Z-SUS offers you are the result of
thousands upon thousands of hours of effort on the part
of hundreds of individuals. Each has donated his or her
work to the public domain. It would be inappropriate to
enjoy the fruits of their labor without expressing our
gratitude. To all the folks who write for the Z-World,

_/

The Computer Journal / #49

A-3



Z-SUS
What's It About and
Who's Behind All This, Anyway?

The Z-System Software Update Service (Z-SUS) is a reincarnation of an
old idea. Years ago, when the Z-World looked to Echelon for products
and support, it was recognized that the fastest way to keep users up to
date was through use of modems and remote access computer systems
dedicated to the task. Thus was born the network of Z-Nodes.

Butit was also recognized that not everyone had modems. And some
who did lived in remote areas, or outside the United States. For these
people, a simple call in to a Z-Node was not simple at all! At the least, it
was prohibitively expensive.

Echelon established a mail order service to keep such users updated.
But that was then. In the interim, Echelon went the way of so many other
companies: into the drink. Left behind was a world of Z-Users who still
needed support.

The Z-Nodes remain. In fact, should you have occassion to call the
typical Z-Node, you will find the activity is greater than ever. However,
the important task of supporting the remote and non-US user remained
unresolved.

In the summer of 1989, Chris McEwen, sysop of Socrates Z-Node 32,
approached Jay Sage with the idea of reviving the update service. As the
author of the last two versions of ZCPR, and a Z-Node sysop himself, Jay
was very interested in the proposal. Both recognized the need but neither
felt capable of handling the task of compiling the necessary software or
editing the issues. For months it seemed the new Z-SUS would be still

born for lack of an editor.

Meanwhile, Bill Tishey was busy on his own compiling lists of Z-Sys-
tem software releases and meticulously preparing libraries of help (on-
line documentation) files. It was decided that Bill’s skills were needed for
Z-SUS. The question was, would he be willing to take on the tremendous
task?

You havebefore you Bill's answer. Z-SUS today has abroader product
list than ever before! Users from around the world rely on regular update
disks and special packages provided through the system. You can, too.

Who, again, makes up Z-SUS?

Jay Sage is the publisher and business agent. He handles your ac-
count, accepts orders and keeps things on track. Jay operates Newton
Centre Z-Node 3.

Bill Tishey is the editor. He searches the world for the latest and
greatest public domain software releases for Z-System. From these, Bill
compiles the regular Z-SUS subscription disks, and the many special
packages. Bill welcomes your ideas for new Z-SUS products.

Chris McEwen handles production and distribution. Write to him
regarding problems with disks. He also handles Z-SUS promotional
efforts. If you know someone who needs our service, let Chris know.
Chris operates Socrates Z-Node 32.

Z-SUS exists to serve you! Let us know of any ways we can serve you
better.

Z-SUS Order Form

Name Computer Type
Address Drive Type / Capacity
Format Alternate
City Telephone
State/Province Zip
Item Description Qty Total

Z-Node Sysop Discount’

Foreign Shipping Surcharge?

Order Total

Not Applicable to Subscription Disks ordered individually, or Custom Order Disks

2Applies to orders outside US, Canada and Mexico only

For subscription orders: Which issue should we start your subscription on?

_ Money Order:___

Visa:_ MasterCard:___

/ /

Most Current Issue:  Volume: ____/Issue: __
How are you paying for your order: Check:__
Visa / MasterCard Account Number: __ _ _ /
Issuing Bank: Expires:__ _ /

?ignature:

Payment must be in US Funds drawn on a US bank.

Mail your order to:
Sage Microsystems East
1435 Centre Street
Newton Centre, MA 02159-2469 USA
Voice: (617) 965-3552 (Sunday - Thursday, 9:00 am - 11:30 pm)
Data: (617) 965-7259 (24-hr, 3/12/2400 bps, password=DDT)

A-4

The Computer Journal / #49



LAN Basics

By Wayne Sung

For several issues we will be talking about local area net-
works (LANSs) in general and Ethernet specifically. Before
diving in, I thought I would try to define some items com-
monly used in LANs. Sometimes I forget that not everyone is
in the networking business.

The biggest difference between a LAN and a number of
point-to-point connections is the sharing of the LAN by all
devices connected to it. In contrast, each point-to-point con-
nection is totally controlled by the owner of the port in-
volved.

This sharing means that only one station attached to the
network may transmit a message at any given time. The rules
that govern this process constitute an access method. The
access method for Ethernet is called CSMA/CD (carrier sense
multiple access with collision detect).

The cabling that runs from one station to another is called
the medium. This can be coax, twisted pair, or fiber. There
are even some wireless LANs, using radio waves or infrared
light. Ethernet started life as a coax medium but today runs
on many different media. Twisted pair particularly is coming
on strong.

Local area networks tend to run at fairly high speeds com-
pared to point-to-point transmission. This is not universally
true, though. Apple’s Localtalk runs at 230.4 Kb/s, compared
to 10 Mb/s for Ethernet. However, this network signaling
rate is not the most important factor in choosing a LAN.
More on this in the next issue.

Stations (typically computers) attach to the medium
through transceivers. These are small boxes with connectors
for the medium side and the computer side. In high-signal-
ing-rate systems such as Ethernet these boxes are metal for
shielding. Lower frequency systems, such as Localtalk, can
use plastic cases.

In Ethernet, transceivers attach to the coax in a number of
ways. In thick Ethernet systems, it is possible to drill a hole in
the coax (thick coax is an inch in diameter) and mount a tap.
The transceiver mounts to the tap.

In thin coax systems, the cable is usually cut and two BNC
connectors are mounted on the cable ends. Then a T connec-
tor allows the transceiver to be connected.

The transceiver converts the separate input and output
signals the computer uses to the single coax that all stations
use. In Ethernet there is also a hardware collision detect func-
tion in the transceiver. The transceiver cable which connects
to the computer has pairs for transmit, receive, collision de-
tect, and power.

Often the transceiver is built directly into the network con-
troller that fits in the computer. This eliminates the trans-
ceiver cable as well as the transceiver casing and allows sig-
nificant price reduction.

Local area networks are often characterized by topology,
that is, the type of picture that results when the network is
drawn schematically. Thus Ethernet is often called a bus to-
pology LAN, because it tends to look like a straight line with
stations coming off the line. Another common topology is the
ring, used in IBM Token Ring and others.

Note that this is a logical topology, and does not in any
way dictate the physical topology. In running wire to connect
the stations, a star shape (a central point with spokes radiat-
ing from it) is the most common. This is because most build-
ings already have ways to get wire from any room to a wir-
ing closet.

When using fiber it is not possible to tap the line the way
coax is tapped. This is because light does not split in a fiber
the way current splits in a wire. When using twisted pair the
rules call for each transceiver to be connected to a repeater
individually. Thus in these two cases a star wiring scheme
naturally results.

A LAN is best characterized as a switch which allows any
attached station to send messages to any other. The format of
the messages is very similar to a a piece of mail. There must
be something to identify who sent the message and whom it
is intended for. This is why these messages are often called
packets.

The contents of each packet are independent of the deliv-
ery mechanism. Usually there is a hardware-generated
checksum (CRC-32 in Ethernet) available for error-checking.

In actual use the exact type of LAN is not all that impor-
tant. Correctly built, any LAN works well. However, bad
practices abound and the tone of the my articles in subse-
quent issues of TCJ is a little cynical, because I have had to
locate and fix many of these bad practices.

Much of what I will have to say is based on experiences
gathered while engineering the coNCert network in North
Carolina. (coNCert stands for Communications for North
Carolina Education, Research and Technology. This is a data
and video network).

[ am primarily a hardware person, and as such am always
on the lockout for measurement methods that can help me
do my job. It is this search for test methods concerning LANs
that led to the design of the first Gag-a-matic. But first some
history.

Wayne Sung has been working with microprocessor hardware and software for
over ten years. His job involves pushing the limits of networking hardware in
attempting to gain as much performance as possible. In the last three years he has
developed the Gag-a-matic series of testers, which are meant to see if manufacturers

meet their specs.

The Computer Journal / #49

In 1985, the job of building a state-
wide high speed data network began in
earnest. The goal was to go to T1 data
rates (1.5 Mb/s) across cities as soon as
possible and go as high as possible af-
ter that. This was based on the design

23



of the microwave system used for inter-city communications.
These were built for multiple T1s with a total capacity as
high as 45 Mb/s.

At first Ethernet bridges were used to join the various
campuses that were part of the network. These first ones
couldn’t actually run at a full T1. Over a year later, more
bridges were acquired which could use a whole T1.

When the campuses were first linked, there were perhaps
250 computers involved. At first the growth was not stagger-
ing. Even two years after the initial links were established
there were maybe 500 computers connected. Then things be-
gan to take off.

As the price of workstations began to decline, connections
happened at a much more rapid pace. Today, just over four
years later, there are more than 3,000 computers connected.
The drastic increase in traffic volume uncovered some weak-
nesses in the network.

One of the things that showed up was that there was so
much broadcasting and multicasting going on that machines
were literally spending all their time processing these and not
doing any useful work. This will be discussed in more detail
in the next issue.

Even though we were trying to control this problem by
deliberately cutting off some types of broadcasts and multi-
casts, it turns out they tend to increase geometrically with the
number of machines connected, and we knew we had to go
to a different way of connecting the campuses, namely rout-
ers. More on these in two issues.

Back to the subject of testing. At first there was a commer-
cial LAN tester available to me, but I never liked it because it
was not at all easy to set up, and often by the time I could get
it running the problem had gone away. Thus [ decided to see
if I could do better developing my own test devices.

In most commercial testers, you get a packets-per-second
reading. However, they almost always average this over a
one second period. In an Ethernet, packets with minimum
spacing between them and packets evenly spaced are very
different loads, even if the total packets are the same. Closely
spaced packets are much more difficult to receive.

In an interrupt-driven receiving device, there will be a
minimum response time. If the peak packet rate exceeds
what this response time allows, then packets will be lost.
Even if the receiving device is not interrupt-driven, you
might still lose packets because there aren’t enough cycles to
process packets at such a high rate.

You also cannot arbitrarily decrease the averaging interval
in the measurement device, because the same number of in-
structions will need to run more often. This will cause the
device to run out of cycles. As it turns out, this commercial
device | had, even though represented as a full speed device,
ran out of cycles anyway.

Rather than trying to build a faster software device, I
looked at what | was trying to measure. It turns out to be the
energy in the line. By integrating the voltage pulses on the
line, I could get a much better picture of bursts. While trying
different ways to make this measurement I tried putting an
audio VU meter across the line.

This type of meter normally did the type of integrating I
was looking for. In audio work you have the same problem
to solve. A short loud sound is perceived differently by the
human ear than a continuous sound. The VU meter compen-
sates for these differences. 1 still use this meter for quick
checks.

As the speed of bridges and routers improved rather
quickly, we found that normal traffic could no longer outrun
these units. At the same time, the advertisements (and some-

24

times even the specifications!) showed such high processing
rates that it seems you could never overload them. Thus the
Gag-a-matic 1 was born.

A friend of mine in the music business likes to turn ampli-
fiers on full and hear what they sound like when driven to
distortion. He would always say, “‘Let’s gag it Since | was
doing the same thing to networking devices, | named my
testers in honor of him.

In essence a Gag-a-matic tries to deliver Ethernet packets
at as high a rate as possible. The first such was a Multibus
Ethernet controller.

It wasn’t long before we were testing Ethernet devices for
throughput. Gag-a-matic 1 puts out over 14,700 packets per
second (at a 64 byte packet size the Ethernet limit is 14,880).
The packets themselves are limited to one or two different
types, but when this unit was built we were using only
bridges, and we didn’t need too many packet types.

Few devices have succeeded in passing this stream. We
quickly found out that our commercial tester simply could
not keep up. By slowing the stream down we found that the
tester started losing detail at as little as 3% load and beyond
10% was hopeless.

It turned out that the Ethernet board in the tester has
about 700k of memory, and as long as that wasn’t exhausted
the packets coming in could be captured. Once this memory
was used up, packets had to be moved to host memory. It
took several packet times to move one packet, thus much
data would be lost.

Since [ only wanted packets-per-second, it occurred to me
to put a frequency counter on the carrier detect pin of an
Ethernet device. This is how Gag-a-matics are “calibrated”,
since if only one device is talking there are no collisions and
the frequency counter produces accurate readings.

I now have Gag-a-matic [V (subtitled “Just when you
thought it was safe to go onto the network again”). This is
not the fourth unit but rather is a four-headed device, which
can generate four different packet streams at the same time
with enough CPU capability to calculate protocol-related
data in the packets. Salesmen are beginning to hate us.

Interestingly enough, while G1 is a 10 MHz 68010, G4
uses four 33 MHz 68020 processors but actually is slightly
slower -- it only does about 14,600 packets per second per
stream. This is due mostly to the different Ethernet devices,
but G4 is so much easier to load that I could actually bear to
write a “user interface” to it.

On the other hand, G1 has no more than a debug monitor,
and I have to load S-records into it, so I tended to keep the
test programs as small as possible. G4 has ways of loading
from Ethernet.

Nonetheless, 1 had to kick out the resident operating sys-
tem when | started the Ethernet device. Without directly con-
trolling the chip, the speed was maybe 1,500 packets per sec-
ond. I was shown how to bypass most of the operating sys-
tem, but even calling the Ethernet driver directly only got me
up to 4,000 packets per second.

I wanted G4 because we finally convinced the manufac-
turer of the microwave system to give us a way to use the
whole 45 Mb/s as one stream rather than 28 T1’s. Thus I
wanted to generate the equivalent of four full Ethernets of
traffic. The devices that can switch that much traffic are a
little hard to get as yet.

These articles are not meant to show how to build a LAN.
Construction practices are usually supplied by component
vendors, and should be followed closely. In the next issue we
will examine some not-so-obvious things that might prevent
you from getting maximum performance from your LAN.@

The Computer Journal / #49



The Z-System Corner

Putting the NZCOM Virtual BIOS to Work

By Jay Sage

For this issue we are going to look once more at ways to
use the NZCOM virtual BIOS. Ten issues back, in TCJ #39, |
talked about how one can take advantage of NZCOM'’s in-
credible ability to change the BIOS, statically and dynami-
cally, without requiring any source code for the computer’s
real BIOS. In that column I described how Cam Cotrill, one
of the authors of the Z-System DOS (ZDOS), used the
NZCOM virtual BIOS to overcome problems experienced
with ZDOS on computers whose real BIOS failed to preserve
the Z80 index and/or alternate registers across BIOS function
calls, as is required for ZDOS. To Cam’s code, | added my
own enhancement to implement the Z-System environment’s
drive vector.

[ had hoped that those two examples would inspire others
to apply this technique to a wide range of problems, but so
far nothing has appeared. It's not for lack of a need, how-
ever, for I have seen on Z-Nodes quite a few discussions of
issues that could be handled quite nicely in this way. Ever the
optimist, I will try a few more examples. Two of the ex-
amples will essentially be the solutions to problems asked
about recently in messages posted on Z-Nodes.

The starting point will be the modified NZCOM BIOS that
I discussed in the earlier TCJ column. The main parts of the
code are shown in Listing 1. Several interesting features are
worth pointing out before we proceed to our new modifica-
tions.

The beginning of the code has the material required for
the generalized loading concept developed by Bridger Mitch-
ell and described in detail in TCJ issue #33 (if you don’t have
all these back issues, you would do well to pick them up).
The NAME statement embeds an ID into the REL object code.

The NZCOM.COM and JETLDR.COM loaders use this ID to
recognize the function of a module they have been asked to
load so they can figure out its proper load address. The
COMMON statements allow any addresses in the Z-System
to be installed into the code by the loader at load time. This is
the beauty of Bridger's concept: a single binary file can be
used in many different systems.

The next section of the code must adhere to a rigidly de-
fined format. First comes the table of jump vectors as re-
quired in the CP/M-2.2 specifications. With the exception of
the cold and warm boot routines, these jumps would nor-
mally go directly to the real BIOS. Since we want to intercept
this code and enhance its functions, we vector to other loca-
tions in the virtual BIOS code. Note that the jump vector
table has room for 13 extra custom BIOS functions that might
be implemenied in the user's system.

The block of jump vectors is followed by some special
data for NZCOM. First there is an ID string that can be used
by programs to determine if an NZCOM version of Z-System
is currently running. Then there is a data byte with the num-
ber of the user area where the command processor file is
stored. In an NZCOM system, the command processor is
loaded from a file and not from the system tracks of the disk.
Finally, there is the space for the file control block for the
CCP file. Then comes the replacement warm boot code that
loads this file.

This is an area where changes would be made in a multi-
user system (a number of such systems are around, including
some manufactured by Televideo). Imagine that there are
two terminals running on the system and each user wants to
run a different configuration of NZCOM. Clearly, they can’t
both use the same NZCOM.CCP file.

Therefore, each user has to be set up

Jay Sage has been an avid ZCPR proponent since the very first version appeared.
He is best known as the author of the latest versions 3.3 and 3.4 of the ZCPR com-
mand processor, his ARUNZ alias processor and ZFILER, a “point-and-shoot”
shell.

When Echelon announced its plan to set up a network of remote access computer
systems to support ZCPR3, Jay volunteered immediately. He has been running Z-
Node #3 for more than five years and can be reached there electronically at 617-965-
7259 (MABOS on PC Pursuit, 8796 on Starlink, pw=DDT). He can also be reached
by voice at 617-965-3552 (between 11 p.m. and midnight is a good time to find him
at home) or by mail at 1435 Centre Street, Newton Centre, MA 02159. Jay is now
the Z-System sysop for the GEnie CP/M Roundtable and can be contacted as
JAY.SAGE via GEnie mail, or chatted with live at the Wednesday real-time confer-
ences (10 p.m. Eastern time).

In real life, Jay is a physicist at MIT, where is tries to invent devices and circuits
that use analog computation to solve problems in signal, image and information
processing. His recent interests include artificial neural networks and supercon-
ducting electronics. He can be reached at work via Internet as SAGE@LL.MIT.EDLI.

The Computer Journal / #49

with a different name or user area for
the CCP file. One place this change
would have to be made is in the virtual
BIOS code. I am not going to say any
more on this subject, but | hope that
some day we will get a TCJ submis-
sion dealing with the issues of imple-
menting Z-System on a multi-user sys-
tem.

Now we finally come to the internal
BIOS function routines, such as
ICONST and ICONIN. All of these en-
try points have code that loads the A
register with the address offset in the
jump table of the real BIOS and then
calls the routine DOBIOS, whose func-
tion was described in detail in my col-

25



umn in issue #39. Briefly, DOBIOS saves all the alternate and
index registers, calls the real BIOS function, restores the reg-
isters, and then returns to the calling program.

If we want to incorporate additional functionality, this is
the place for it. The code in Listing 1 includes the enhance-
ment to the select-disk code to make it check the drive vector
and return an error code if the drive is not enabled. This
code, too, was discussed in detail in issue #39.

Changing the Logical Drive Assignments
There are times when you may not like the way the manu-

facturer of your computer has assigned the logical drives
(those things you know as A:, B, and so on). On my Telev-
ideo 803H, the hard drive has the two partitions A: and B,
while the floppy is C:. As an example, | have implemented a
special NZCOM BIOS that swaps drives B: and C;, so that the
floppy can be referenced as B: and the second hard disk par-
tition as C:. I'm not sure why one would want to do this, but
there might be reasons.

The ISELDK routine with the additional code is shown in
Listing 2. The code is pretty simple. When the SELDSK BIOS
function is invoked, the requested drive is passed in the C

Listing 1. The modified NZCOM BIOS source code that protects
the Z80 alternate and index registers and that checks the
ENV drive vector when selecting a disk.

Program: ZSNZBIO

H

; Author: Joe Wright / Cameron W. Cotrill
; Version: 1.2

; Date: 26 January 1989

i

Derivation: N2ZBIO.Z80 wversion 1.5

This version has been modified to check the drive vector
in the disk select routine.

~ e

... copyright notice and comments

~

NAME (’BI0Z12') ; NZ2COM needs ‘BIO’ as first
; ..three characters
COMMON /_ENV_/
Z3ENV: ; Address of ENV module
ccp EQU Z3ENV+3FH ; Where CCP address stored
DOS EQU Z3ENV+42H ; Where DOS address stored
;

DRVEC EQU Z3ENV+34H Drive vector address

COMMON /_CBIO_/

CBIOS: Address of real BIOS

~

CSEG

... section with equates omitted

~

Beginning of NZBIO. The header structure is absolutely
crucial to the correct operation of NZ-COM.
~-> DO NOT CHANGE IT <--

SNr e e

START: JP BOOT ; Cold boot
WBOOTE: JP WBOOT ; Warm boot

JP CONST ; Console status

Jp CONIN ; Console input

;... rest of jump table

Jp IWRITE ; Write

JP LISTST ; List status

Jp ISECTR ; Sector translation

Ds (30-17)*3 ; Room for 13 extra jumps
SIGN: DB ‘NZ-COM* ; ID for NZCOM BIOS
USER: DB o] ; User area for CCP file
ZCFCB: DB 1,’NZCOM CCP’,0,0,0,0

DS 17

...auxillary jumpe for IOP (omitted)

~

END OF HEADER

~

1D C,OPENF
CALL NZFIL ; Open NZCOM.CCP
1D HL, (CCP) ; Load it at CCP

Read NZCOM.CCP to (CCP) until end of file (code omitted)

~

; ... BDOS service routines (omitted)

The following calls build a shell arocund BIOS calls and
preserve the IX, IY, and alternate registers as required
by ZSDOS and ZDDOS (and common sense).

~ o~ owe

ICONST: LD A,6

IR DOBIOS
ICONIN: LD A,9

JR DOBIOS

; ... similar code for other functiones omitted

ISECTR: 1D A, 48

DOBIOS: LD HL,CBIOS
ADD A,L
LD L,A ; Never a carry from this
EXX ; Swap to alternate reg’s
LD (HLP) ,HL ; Save alternate registers
LD (DEP) ,DE
LD (BCP) ,BC
D (IXREG),IX ; Save index registers
1D (IYREG),IY
EXX ; Swap back
EX AF ,AF’ ; Save alternate PSW also
PUSH AF
EX AF ,AF’
CALL JPHL ; Do BIOS call
EXX ; Swap to alternates
1D HL, (HLP) ; Restore them
1D DE, (DEP)
LD BC, (BCP)
LD IX, (IXREG) ; Restore index registers
D 1Y, (1YREG)
EXX
EX AF ,AF’
POP AF ; Restore alternate PSW
EX AF ,AF’
RET ; Return to caller

; Special routines are coded here.

ISELDK: LD HL, (DRVEC) ; Get drive vector
LD A,l6 ; Get 16-drive into B
; The following code is free-form and may be moved around SUB c
D B,A
; ... coldboot code (omitted) ISELDSK1 :
ADD HL,HL
; Warm Boot Entry DINZ ISELDSK1
LD HL,0 ; Value for invalid drive
WBOOT : . RET NC ; Return if invalid drive
j-.+ some of code omitted D A,27 ; Otherwise, use CBIOS
1D DE, (USER) ; Log into user area where JR DOBIOS
LD C,GSUSR ; NZCOM.CCP is kept
CALL NzZDOS ; ... area for saving register contents (not shown)
XOR A
LD {ZCFCB+32) ,A ; Clear current record . Bnd of NZBIO
;
26 The Computer Journal / #49




register. The code checks sequentially for values of 2 (C:) and
1 (B:), and it changes the value in C to 1 and 2 respectively. If
the value is neither 1 nor 2, then the value is left unchanged.
Finally, the BIOS routine is called. Thus, virtual BIOS tricks
the real BIOS, which still knows the drives by their original
names.

Once this code has been entered, say under the name
SWAPBC.Z80, then it is assembled to a REL file (Z80ASM
SWAPBC/R in the case of the SLR assembler). If you wish,

. the file can be renamed from SWAPBC.REL to SWAPBC.ZRL

just to make it clear that it adheres to the ZRL standard. The
loaders don’t care which name is used. Now you just enter
the command JETLDR SWAPBC.ZRL and, presto, you have a
new BIOS with the drive designations reversed.

Some cautions are in order. Drive references that occur
within the real BIOS will still use the same physical units and
will not know about the swap. External routines that call the
BIOS or DOS will see the drives as swapped. Thus swapping
the A: drive (assuming that is where NZCOM.CCP is loaded
from) will cause the CCP file not to be found. I just tried
modifying the code in the listing so that it swapped A: and
B:. I also changed the number 1 in the first byte of the
NZCOM.CCP file control block to a 2. Now the CCP file will
be loaded from the B: drive, which used to be the A: drive. It
worked just fine!

In this example, the drives are relogged automatically by
the loader. If you try writing a more sophisticated BIOS that
has a swap table in it that you intend to change later using a
utility, just make sure that the utility forces a relogging of the
swapped drives (or all drives) after the swap has been imple-
mented.

Listing 2. Modified select-disk BIOS routine that also swaps
logical drives B and C.

ISELDK: 1D HL, (DRVEC) ; Get drive vector

D A,l6 ; Get l6-drive into B

suUB C

1D B,A
ISELDSK1:

ADD HL, HL

DJINZ ISELDSK1

LD HL, 0 ; Value for invalid drive

RET NC ; Return if invalid drive

LD A,C ; Get disk requested

CP 2 ; See if it’'s C:

JR NZ , ISELDSK2 ; Skip if not

LD c,1 ; If so, change to B:
ISELDSK2:

CP 1 ; See if it‘s B:

JR NZ , ISELDSK3 ; Skip if not

D c,2 ; If so, change to C:
ISELDSK3:

LD A,27 ; Now log in drive

JR DOBIOS

Listing 3. Modified list output routine. It checks the
printer width byte in the environment. If the value is 0,
printer output is disabled by simply returning without
calling the real BIOS list output routine.

PCOL EQU 23ENV + 37H ; Address of width data

ILIST: LD A, (PCOL) ; See if printer width is
OR A ; ..8et to 0
RET 4 ; If so, just return
LD A,15 ; Else, call BIOS
JR DOBIOS

The Computer Journal / #49

Disabling the LIST Device

I think it was our editor Chris McEwen who raised this
issue with me. As I recall, he was unable to use a particular
utility on his Z-Node because it had a function--not disabled
when the wheel byte was off--that engaged the printer.

I had faced a similar problem myself. I have no printer
attached to most of my computers, and occasionally I would
accidentally hit a key that would initiate a printing operation.
On some of the computers this meant instant crash! The BIOS
would wait forever for the printer to signal that it was ready,
and if I didn’t want to wait that long, I had to hit the little red
button, losing all my work.

My simple solution to this was to go into the BIOS and
replace the jump instruction for the LIST function with a
simple RET. Boy could that printer print fast! A little POKE
instruction in my startup alias could handle this for me very
nicely.

When Chris presented his problem, I told him he could
use the BIOS in his NZCOM to take care of things. Just make
up two versions of the BIOS, one normal version and one
with the list routine RET’d out. Then just use NZCOM or
JETLDR to install the one needed.

The code shown in Listing 3 is a more elegant solution. It
looks at the printer configuration data stored in the environ-
ment. If the width is set to zero, then the print output is
disabled. Otherwise it functions normally. As you see, the
code is short and sweet.

Console input/Output Enhancements

George Worley asked on Z-Node Central for a suggestion
as to how he could get his system to send some escape se-
quences to his terminal whenever he pressed certain keys.
Again, the NZCOM BIOS can solve the problem.

I originally wrote a virtual BIOS that would remap some
keys on the keyboard. I make it interchange the ‘a’ and ‘b’
keys--not likely to be very useful, but it illustrated the point.
I'm not going to show you that code; it is quite similar to the
code for swapping drives except for one detail that will be
covered in the example [ will present.

The interesting thing about George's problem is that
something going on in the console input routine is supposed
to initiate an activity with the console output routine. The
notion of mixing up the BIOS functions caught my interest.
decided to write a BIOS that would change the cursor on my
Televideo terminal to a blinking block when I typed a tilde
and back to a blinking underline when [ typed a back apos-
trophe. See Listing 4 for the result.

The thing that is different here from the earlier examples
with the SELDSK function is that in those cases the action
was taken with input data, before the function was called.
Here we must take action on data returned by the function,
after the function has executed. Instead of jumping to
DOBIOS, we call it and then continue with our code on re-
turn from it.

Once we have the character returned by CONIN, we
check to see if it is either of our trigger characters. If not, we
just return to the calling program with the character. If we do
detect one of the trigger characters, then we send a string of
characters to the screen using the CONOUT function. When
that operation is complete, we then get the typed character
back into its proper register and return.

I hope these examples will get you thinking about new
ways to use the virtual BIOS. | have shown only very simple

27



code. NZCOM allows one to declare as much space as one
wants for a virtual BIOS, and someday I would like to see

someone write a version of BYE that can be loaded as a vir-
tual BIOS.

Z-System for MS-DOS

I'd like to finish with a brief announcement. I had origi-
nally hoped to discuss this in more detail, but there just is not
time or space, so | will leave it for the next issue. But I do

"want you to know about it now.

I'm sure I'm not the only Z-System user who also uses
MS-DOS computers and finds DOS’s primitiveness annoying
and frustrating. Well, the new version 2 release of PCED
(Professional Command line EDitor) is a DOS enhancement
product that comes as close as any | have yet found to bring-
ing the features we love in Z-System to MS-DOS. This is not
entirely accidental, as I made the author aware of our Z-
System work. As a result, PCED gives one most of the func-
tionality of LSH and ARUNZ: full command history, both
line and screen oriented, with editing and searching; multiple
commands on a line; command scripts with advanced pa-
rameter parsing. There are some Z-System features that
PCED does not add to DOS, but there are also many very
powerful features it does bring that are probably only pos-
sible with the larger memory available on a DOS machine.

As is my wont with products like this that I use myself
and really like, I got Sage Microsystems East to add it to the
product line. PCED is now available at a very attractive price
of only $50. I'll try to tell you more about it next time. @

Listing 4. Modified CONIN routine. When particular
characters are typed at the keyboard, escape segquences are
sent to the screen. In this particular example, typing a
tilde causes the escape sequence to select a blinking block
cursor to be sent to the screen, while typing a back
apostrophe sets the cursor to a blinking underline (for my
Televideo terminal). Thanks to Howard Goldstein for this
improvement to my original code.

ICONIN: 1D A,9 ; Perform the BIOS call
CALL DOBIOS
CP -t ; If tilde, send out
JR Z,SEQ1 ; ..sequence 1
CcP e ; If not back apostrophe,
RET NZ ; ..return to calling

; .. program

; Back apostrophe was typed
PUSH AF ; Save input character
LD A,’3"
JR SEQ

SEQl: PUSH AF ; Save input character
LD A,y

SEQ: LD (POKE+1) ,A ; Poke in final character
PUSH BC
LD C,1BH ; Send escape to screen
CALL ICONOT
1D c,'.’ ; Send period to screen
CALL ICONOT

POKE: D C,$-$ ; Filled in from above
CALL ICONOT ; Send last char to screen
POP BC
POP AF ; Get input character back
RET

continued from page 37
guages, after all!

Get Your Feet Wet
No one ever learned how to swim without going into the
water. Get a public domain program that includes source

‘code. Use your assembler to reassemble/link it, and then

satisfy yourself that the resulting COM file is the same as the
original one. This is not an exercise in futility! It gets you
familiar with the mechanics of your assembler and linker, so
you can think more about programming and less about oper-
ating the assembler.

While you are experimenting with small programs, look
forward to the next phase by reading the excellent articles by
Bender (reference 4), and the tutorial by Meyer (reference 6).
Your experimental program should be a standard .COM file,
not something more exotic. Assemblers, linkers, and
MLOAD (or the newer MYLOAD) are designed to produce
.COM files when no other forms are specified. So your code
will begin at address 0100H. The last instruction performed
by your experimental program must return control to the
operating system if you expect to continue use of your com-
puter without resorting to a cold boot restart! The safe
method is to make the final instruction a “JP 0000H"”, which
causes a warm boot followed by return to the Command
Processor.

If you need help, talk to your nearest AL programmer. Is
there a subject you would like to see in more detail in the
pages of TCJ? Tell the author about it, or write to the editor.
[Ed Note: This is good material for the Reader-to-Reader column] The
author can be reached via modem at (213) 670-9465, Z-Node

#2 (Z-Node Central).

What ever happened to John Poplett? He soon quit techni-
cal writing and began programming professionally. He
learned C, then learned assembly language for the VAX and
for the 80x86 series of CPUs. The last time I heard from him
he had tackled OCCAM, the assembly language for parallel
processing transputers, and was busy with a C compiler for

parallel processing.@

References:

(1) Z80-CPU Technical Manual, Zilog, Inc., Campbell, CA
(408) 370-8016

(2) Hitachi HD64180 8-bit High Integration CMOS Microprocessor
Data Book, Hitachi America, Ltd., San Jose, CA (800) 448-2244

(3) Bruce Morgen, “REL-Style Assembly Language for CP/M”
TCJ, Number 35, Nov 1988, "Part 1: Choose Your Weapons”
TCJ, Number 36, Jan 1989, “Part 2: Getting started”

(4) Andrew Bender, “Relocating Assemblers and Linkage Editors”
Microsystems, Vol 4 No 9, Sept. 1983, page 86
Microsystems, Vol 4 No 10, Oct. 1983, page 114
Microsystems, Vol 5 No 1, Jan. 1984, page 120

(5) Dennis N. Quinn, “Structured Programming with M80”
Micro/Systems Journal, Vol. 1 No. 3, Jul/Aug 1985, page 26

(6) Eric Meyer, Introduction to Assembly Language Programming (A
10 chapter tutorial available in disk file form under the name
“MEYERTUT.LBR" available on Z-Node #2)

(7) Rodney Zaks, Programming the Z80, Sybex, 1979
ISBN 0-89588-013-X

(8) Kathe Spracklen, Z-80 and 8080 Assembly Language
Programming, Hayden Book Co., Inc., 1979 ISBN 0-8104-5167-0
LCCC No. 7965355

(9) William Wickes, Logic Design With Integrated Circuits, John Wiley
& Sons, Inc, 1968 LCCC No. 68-21185

(10) 8080 Assembly Language Programmers Manual, Intel Corp.,
Cupertino, CA. Intel ref. number 98-004C (1976)

The Computer Journal / #49



PMATE / ZMATE Macros

2. Terminology and Utility Subroutines

By Clif Kinne

Notations for This Column

A Shorthand for Macro Names

In our first column we had two macros, which we named,
‘D" and ‘*D’, and referred to them, as such,- enclosed in
single quotation marks. It bothers me that we also use quotes
around single characters for purposes other than to signify a
macro name. We could get around that by always saying, for
example, “the macro ‘D””’. However, if we agree, we can
adopt an even more concise and more nearly unique short-
hand name, which is the macro call itself,- .D in our example.

The only conflict I can think of is that of the buffer calls, .0
through .9, with the corresponding decimal fractions. So, un-
til I am persuaded otherwise, [ shall use .D as shorthand for:
“the macro whose name is ‘D’”’. As a corollary, I propose to
use .(n) as shorthand for: “the macro represented by the
character whose ASCII number is n”. This will allow us to
identify macros where n = 128..255, as well as giving us alter-
natives for control characters and other awkward situations.

Radix Considerations in the Macro Listings

For ease of reading, any numbers in the source code list-
ings for the macros will be in decimal,- base 10. When clarity
is enhanced by using an ASCII representation of the number,
that will be done; e.g., for ‘insert a semicolon’ ““;I is clearer
than 591, which might require consulting an ASCII table. On
the other hand, 75QX expresses what you are doing much
more clearly than “KQX

However, if you ever expect to be working in hex (or
octal?) as Jay does on occasion, he cannot urge you too
strongly to use radix-invariant number representation. That
means an expression in one or more ASCII characters for
numbers greater than 9 (7 for octal). For example, to move
down 150 lines, the following two command lines are
equivalent:

(1) 150L
(2) +1K*2L

(with base 10 radix)
{with any radix > 2)

This is no problem except for 13 and 32, the CR and
SPACE characters. It is disturbing to have a macro insert a
new line when you want it to say “*MQX, for example. To

avoid that, I shall use 13QX in this column, but, for radix
invariance, you should convert it to

(3) llM_lleQx’
(4) 1 14/4QX

for example, or
to save a byte.

In these columns [ am also going to avoid the radix invari-
ant form for the ASCIl number of the SPACE character. In
printed text it is hard to be sure whether a space is a space. |
shall use 32 instead for that reason.

Incidentally, if you ever want to change all decimal num-
bers to hex, they can be found very easily using the .D macro
presented in our first column. If you have .D in your permacs
by now, get the permanent macros into an empty buffer with
QMG, go to the top, and repeatedly execute

(3) [.De1>9]

It should stop at every number greater than 9: an unantici-
pated and unorthodox use for our first macro.

MATE vs. PCMATE vs. ZMATE

This is another area where we shall have to keep clear
what we are talking about. First, | propose that we recognize
the three categories, rather than just “8-bit’”” and “16-bit”’ sys-
tems. [ suggest the above names as identifiers. I left the P off
PMATE, to minimize confusion with PCMATE. We can then
use PMATE as a generic term for all three.

The differences in macros written for the three systems are
slight, and we hope it will rarely be necessary to list a macro
for more than one. As long as we keep aware of the differ-
ences (see Table 1.) we should be all right.

I do not propose anything like an exhaustive discussion of
these differences at this juncture, but let me cite a few conse-
quences of these differences that bear on macros. As always,
we shall appreciate your advising us of additions or correc-
tions that should be made to this table.

1. Numeric variables.

With judicious use of the 100 variables available in
PCMATE it should rarely, if ever, be necessary to save vari-
ables on the stack. If that turns out to be true, the extra byte
entailed in setting and referencing variables 10-99 may be a

small price to pay.

Clif Kinne is a retired computer designer. He cut his teeth on vacuum tube and
acoustic delay line machines in the fifties, made the transition to transistors and
magnetic cores in the sixties, left the field to his children in the seventies, and tried,
vainly, to catch back up with them in the eighties. He can be reached by voice at 617-
444-9055, or via a message on Jay's BBS, 617-965-7259. His address is 159 Dedham

Ave., Needham, MA 02192

The Computer Journal / #49

If you use the single-digit numbers,
0.9, in PCMate, you will have to be
careful. If the following command
starts with a digit, separate the two,
preferably with an ESCAPE. Otherwise
PCMATE will read them as a 2-digit
variable.

29



2. Preloaded variables.

This has caused me some tergiversation. First I made the
autoexec macro save @0, @1, and @2 in V90, V91, and V92, so
I could save the extra byte most of the time. Then I found I
was adding an escape, or a leading 0, to avoid the 2-digit
syndrome. Furthermore, | was apprehensive that PCMATE
might be doing something with V3.V9 sometime. So 1
switched to using V10..V99 exclusively.

Having done that, however, I find that I am disturbed by
how much I lengthen a macro when I translate it from MATE
to PCMATE, often by a dozen or two bytes. And I feel a lot
easier about the risk of some other use of variables by
PCMATE.

Now that [ am writing this column, I am going to reverse
myself again, except that I shall save @0, @1, & @2 on the
stack instead of in V90, 91, & 92. That will help my macros to
be usable in all three PMATES. I shall also find out some-
thing about how often I am inadvertently losing the stack by
aborting out of macros.

Readers who only work in PCMATE should feel free to
take advantage of the 90 extra variables.

3. Support of B@SE, B@3C, B@6M, et cetera

Fortunately, two of the three PMATEs support this. For
one thing, this command makes it easier to use buffers with-
out destroying their contents. We saw an example of that in
the first of these columns last issue. For MATE, which does
not support it, there are ways to guard against loss, and we
shall offer macros to help in this. One, the Buffer Test, .*B, is
included as one of the utility macros in Listing 1. I am going
to interrupt this rambling here to discuss utility subroutines
in general, and my own most used utilities in particular, as
prelude to further remarks.

Macros for This Issue: Utility Subroutines
Macros for Single-character User Input.
See Listing 1

I believe it was a good three years before | gave any
thought to utility subroutines. When I began to get “NOT
ENOUGH ROOM IN PERMANENT MACRO AREA” fairly
often, 1 began to look for ways to get more room without
adding another allocation block to the size of MATE itself.
So, | thought | would look through the permacs for repeated
strings and see what could be done. Sure enough. About the
worst repeater was the upper/lower case-independent test
for the key struck in response to a command-line question:

(6) @K=’''S1(@K="''s) (13 bytes)

where ‘S stands for any upper case letter. This can be short-
ened to

(7) @K&95="'S
(8) §K&' ' _=''S

or its radix-invariant form:

(8 bytes).

The drawback with these latter two is that they cannot be
used if admissible answers to the questions asked include
digits or other characters with ASCII numbers between 32
and 64. 1 had not given this much thought until I got PCMate
early this year and found macros that came with it using the
test:

(9) €K132=""g

30

Sure enough: ‘ORing’ a byte with 32 (0010 0000 bin.) sets
bit 5, converts upper case letters to lower case, and moves
control characters up by 32 ASCII. But the digits and others
have bit 5 set already, so are unaffected.

On the other hand, ANDing a byte with 95 (0101 1111), as
in (8) above, resets bit 5 (as well as bit 7), thereby corrupting
the digits (and adjacent characters) to control characters. So |
am converting to PCMate’s form of the test, and am listing
here subroutines based on that form.

Listing 1. Macros for single character user input.

“X"A ;Answer. 15 bytes

FUNCTIONAL SPECIFICATION: ORs the byte in €K with
bit 5, converting upper case responses to lower.
Compares this with the argument preceding the
call. 1IF equal, returns with TRUE on the stack.
ELSE returns with FALSE on the stack.

~e we Ne we we

; USAGE: Typical Call: ‘'s."ARS

; LIMITATIONS: The calling argument, ‘‘s ,

H cannot be a control character.

K132 ;IF the character typed converted to lower case 1

= ;is equal to 2

(€A!132) ;the calling argument converted to lower case, 3
’ ; THEN push TRUE on the stack, ELSE push FALSE. 4

;Compact form: @K132=(@A132),

XY ;Yes. 4 bytes

H FUNCTIONAL SPECIFICATION: IF ‘‘'Y’’ or ‘‘y’’ is typed,

; returns with TRUE on the stack; ELSE with FALSE.

; SUBROUTINES USED: ."A, ‘Answer’ subroutine

; USAGE: Typical Call: .7Yés

‘*Y.”A; Invoke the Answer macro with ’‘Y as the argument.

~X~C ;Confirm 50 bytes
; FUNCTIONAL SPECIFICATION: Asks if okay to delete

; or overwrite. IF Y is typed, returns with TRUE
; on the stack; ELSE with FALSE.

H SUBROUTINES USED: ."Y, ‘Yes'’ subroutine

; USAGE: Typical Call: .°ceés

GOkay to delete or overwrite?$ ;Ask the question. 1
Y :Invoke the ."Y macro. 2

“X"B ;Buffer test. 16 bytes
FUNCTIONAL SPECIFICATION; Tests whether current
buffer is empty. IF so, returns with TRUE on
the stack. ELSE asks if okay to delete buffer.
IF Y, returns with TRUE on the stack;
ELSE with FALSE.

~e we we e we

; SUBROUTINES USED: .°C, ‘Confirm’ subroutine

USAGE: When writing a macro which will delete or
overwrite a buffer, call ."B while in that
buffer to avoid unintended loss of its
contents.

."B should shortly be tested by @S, with the
program continued or aborted accordingly.

R I TN AN Y

Recall that:
€C = 0 at Top of Buffer
8T = 0 at End of Buffer.
€C!8T = 0 only if both €C and &T are 0, which is
TRUE only for an empty buffer.

Ne me me we Ne

The Computer Journal / #49



The Answer Subroutine, ."A

This is the basic subroutine of this group. The character to
which @K is to be compared is passed to it as a leading
numeric argument. [t makes the case-independent compari-
son and sets the top of the stack TRUE or FALSE, accord-
ingly. After a call the stack must be POPped (by @S or @S’) to
govern the desired action.

It could have been held to a length of 9 bytes, by simply
changing “s to @A in (9) and adding a comma:

(9) €K132=""'g
(10) €K132=¢a,

8 bytesa
9 bytes

However, by adding 5 bytes I can save myself the vexa-
tion of forgetting to make the calling argument lower case:

(11) @K132=(€A132), 14 bytes

You can see from USAGE in Listing 1 that a call plus the
POP take 6 bytes, so | am saving only two bytes per call over
the 8 bytes in (8) or (9). However, the real savings come, not

Listing 2. Macros to expedite subroutine calls.
“X"G ;GoBack (for MATE only) 106
bytes

FUNCTIONAL SPECIFICATION: Returns to the ‘home’
buffer, which has been saved in V7 (by @BV7).

. e

; USAGE: €7.°G

@A=€B% ;IF still in home buffer, do nothing. 1
€A=0({BTE} ;IF 8B was 0, return to T Buffer. 2
4A=1(BOE} ;IF @B was 1, return to Buffer O. 3
4A=2 (B1E} ;IF @B was 2, return to Buffer 1. 4
8A=3(B2E} ;IF @B waes 3, return to Buffer 2. 5
@A=4 {B3E} ;IF @B was 4, return to Buffer 3. 6
@A=5({B4E} ;IF @B was 5, return to Buffer 4. 7
@A=6 {BSE} ;IF @B was 6, return to Buffer 5. 8
€A=7{B6E} ;IF 6B was 7, return to Buffer 6. 9
8A=8{B7E} ;IF €B was 8, return to Buffer 7. 10
€A=9 {BSE} ;IF €B was 9, return to Buffer 8. 11
, €A=10{BYE} ;IF €B was 10, return to Buffer 9. 12
*X"s ;SaveEnv 27 bytes

FUNCTIONAL SPECIFICATION: Pushes variables 0, 1,
2, 7, 8, and cursor position on the stack.
Loads variable, V7, with current buffer, @B.

USAGE: Normally called at the start of any macro
which will alter more than one of the items saved.

e w5 we wi s we o we

’
€0,81,82,87,88, ;Push variables VO,V1,V2,V7,V8 on stack. 1

X, 4L, ;Push current col. and line no. on stack. 2

éBV7 ;Put current buffer no. in variable, V7. 3

“X°R ;Restore 34 bytes

; FUNCTIONAL SPECIFICATION: Restores the

; environment saved by the SaveEnv macro.

’

; STACK USE: 7 out of the 16 levels available.

; USAGE: Must be invoked when exiting a macro which

; has used SaveEnv, ."S, whether that exit

; was normal, a conditional exit, a jump, or

; a programmed abort.

; If the macro is aborted with Ctrl-C or

; terminated accidentally, the variables must

H be reinitialized, manually or otherwise.

97.°G6 ;GoBack to ‘home’ buffer (MATE). If you 1
; are using ZMATE or PCMATE, replace this
; with BR7E.

es-fLL ;Move from cur. line (€L) to saved line. 2

950X ;Move to saved column no. (€S). 3

from shortening this macro, but from making it available as a
permac callable by other subroutine macros with a passed
byte argument.

The Y(es), N(o), and Q(uit) Subroutines.

Next 1 found that, among macros usually in memory, I
was comparing @K with “Y 7 times. with “N 6 times, and
with “Q 4 times. Having the Answer subroutine already in
memory, I could justify writing 3 new 4-byte subroutines:

NAME CODE USAGE
‘Yes’ or ."Y: ‘'Y A ."Yeés
‘No’ or ."N: ‘‘N."A ."N@s
‘Quit’ or .*Q: Q. A .~Q8€s

Source listings for these are so trivial that I have included
but one, ."Y, just for completeness.

You will have noticed that there is an extra flexibility in
these subroutines that was not available with the raw testing
of @K. The comparison can be made when convenient, but
the result made use of later on in the program. Thus, for one
thing, you could ask several questions, pile up the answers
on the stack, then govern some action by a complex boolean
expression through judicious use of the PODs. (e.g:
(@S&@s’)@s).

Next, if you look through your macros for occasions when
you have compared @K with “Y or “N, you may be able to
make up a subroutine that is a great space saver. I found that
I was asking for confirmation many times before overwriting
a file or deleting a buffer. This led to the next example:

The Confirm Subroutine, ."C

As you see from the listing, this routine is just as simple as
.Y, having only two commands. Because of the string,
though, it is 50 bytes long, compared to 4. Since it takes only
4 bytes to make use of it, it is a wonderful time and space
saver in writing macros.

You note that .*C calls .Y, which calls .”A. Let me finish

Listing 3. A subroutine to accept a string of characters.
“X*P ;Prompt 68
bytes

FUNCTIONAL SPECIFICATION: Inserts 3 blank lines and
displays, as a prompt, the one string argument
passed to it. Tags the string response, which
is terminated with a CR.

N e we e

VARIABLES USED: V8,- flags calling macro if an ESC
was typed, so it will abort.

~ e

USAGE: The caller will normally save V8 and the
cursor position on the stack before calling and
and restore them, as well as the CRT screen, at

e N ns e

the end.

oL ;Move to column 0, current line. 1
3[131]) ;Open up 3 lines to set off prompt. 2
-2L ;Move to middle line 3
9T ;Tab, to indent prompt (for esthetics). 4
QAI"AAS ;Insert the one string argument (prompt). S
91 ;Another Tab (more esthetics). 6
T ;Tag beginning of user input. 7
[ ;Begin an iteration on keystrokes: 8
GEsc to abort$; A comand-line message. 9
€K=27v8 ; IF an ESC (27) was typed, store TRUE 10

; in V8, ELSE store FALSE.
€K=13188_ ; IF a CR or an ESC, escape loop. 11
8K=127{ ; IF a DELETE (127), 12
~-D"} ; delete previous character and loop. 13

The Computer Journal / #49

31



+ - N N + character response. It displays a
P play:

| PMATE SYSTEM --> | MATE |  ZMATE | pcMATE | prompt passed to it and tags the string
| l | | I response.
| Numeric variables | 10 | 10 | 100 | For a string of dig‘itS, the caller may
| | (1-digit) | (1-digit) | (2-digit) | store the number in a variable, with #.D
+ + + + + (using our decimal macro from the first
| Variables preloaded by | | | 60 = pay | 1 Oth tri all
| PMATE. (if system has a | None | None | €1 = Month | column). er s r“_lgs are usually
|  built-in calendar/clock) | | | 82 = Year | moved to a buffer, with #B2C, for ex-
T T ? I T ample.
i supports BESE, etc. | No | Yea | Yes | This shoulfi be much cleax:er with an
| [ | | | example, which [follows:][will have to
+ + 4 + + wait for another issue.]
| Supports ..b (execution of | | | |
| buffer b beginning at the | No | No | Yes |
| Cursor position). | | I | A Search Macro with Optional

o+ + + + + Change.

Table 1. Differences among MATE, ZMATE, & PCMATE identified to date. 9
The Change Macro, .C

off this chain, for now, with a routine which calls .*C.

The Buffer Test Subroutine, ."B

I mentioned earlier that there are ways to guard against
destroying your buffers, even with MATE. Well, this is one
of them. If the buffer is empty, your macro can go right
ahead and use it, without bothering you. If it is not, it will
ask if okay to destroy it. If yes, it can go ahead. If not, your
calling routine will have to decide what to do.

Macros to Expedite Subroutine Calis. See Listing 2.

The GoBack (to home buffer) subroutine, ."G

This subroutine enables MATE macros to return to a
buffer previously saved on the stack or in a Variable. For
ZMATE and PCMATE, B@SE performs that function much
more concisely.

The SaveEnv and Restore Subroutines, .”S and ."R

These two save and restore the environment when your
macro is going to move the cursor, go to a different buffer, or
simply use certain variables. I must confess that I am just
now adding these to my own permac area. What pushed me
into it was the thought of having to write much of them over
and over again,- with comments,- in each new macro listing.

Consequently, I expect to be adding to and modifying,
them over the next several columns. In particular, I wonder if
using up 7 stack levels will prove to excessively constrain
any macros which would otherwise call .*R.

A Macro to Accept a Multi-character Response.

."s ;Save the environment. 1

See Lls“ng 3. ."PChange:$ ;Display request for string to change. 2

e8’ ;If an ESC was not typed by the user, 3

A {#B2C} ; Move the string t to buffer 2. 4

The Prompt Macro, . P ."PTo:$ ;Request replacemgntygziing from user. 5
This macro is simply an attempt to extract all of the code 'L ;If an abort (ESC) was not requested. 6
common to several macros which ask the user for a multi- {#83C} ; Move the string typed to buffer 3. 7
-2L6K ;Remove the entire prompt area. 8

[ ;Start loop. 9

es ; IF an abort was requested, escape loopl{

EUS"R@2S$ : ELSE search for string to change. 11

If computers ever become too powerful, eE_ ; IP not found, escape loop. 12

2 . . . GRET to change, ESC to terminate.$ ;Cnd line Msg. 13

we'll just organize them into a committee. 4KR=13 ; IF a CR was typed, 14

{ ; 15

~C*R@2$"AR3S; Make the change. 16

That'll do them in! } ; 17

@K=27 ; 1IF an ESC, escape loop. 18

1 ;ELSE loop & continue search. 19

"R ;Restore the environment. 20

This macro invokes .*P twice,- first
for the ‘search’ string, and then for the ‘replace’ string. It
searches in a forward direction only and starts wherever you
place the cursor. It is my feeling that options, such as ‘search
direction’ and “global’, are more trouble to answer than it is
to move the cursor to where you want to start (at least 99% of
the time).

This is most useful, of course, when bound to a key so it
can be called as an instant command. I have it invoked by
ALT C, in both MATE and PCMATE.@

Listing 4. A search macro with optional change.

~Xc ;Change 97 bytes

FUNCTIONAL SPECIFICATION: Calls ."P to display the
prompt, ‘Change:’. Waits for user’s response,
terminated with a CR. Moves responee to Buf. 2.
Calls ."P to display To:'. Moves s response to
Buf. 3. Clears the prompt area and performs an
iterative search for buffer 2 contents with
optional change to buffer 3 contents.

VARIABLES USED: V8 Set by ."P if user types an ESC
BUFFERS USED: 2 Holds search string.

Holds replace string.
SUBROUTINES: .°s SaveEnv.

"R Restore.

."P Prompt

SIDE EFFECTS: As written, this will destroy any
contents of buffers 2 and 3.

USAGE: Before calling, the cursor should be moved
to or above the line where the search is to start.

Ne mE MO WE W e NS W NE Ne WE WS W N NS Ne Se %4 N6 Ne we
w

The Computer Journal / #49



Z-Best Software

Birth of a New Program

By Bill Tishey

Anyone who accessed the message board on Jay Sage’s Z-
Node this past December and followed the thread on devel-
opment of XFOR.COM by Gene Pizzetta had a real treat. Not
only did you get to follow development of a program from
its conception to release, but you were able to witness the ex-
citement and enthusiasm of user-involvement in its develop-
ment.

Background: ZFILES.LST and the Z-SUS Database

This whole episode should probably start with a discus-
sion of ZFILES.LST which I have been updating monthly for
the past several years. ZFILES.LST was a list of Z-System
program and utility versions (released

indicates a commercial or proprietary program and “?” indi-
cates a pending program (under beta-testing).

ZFILES has continued to follow this format. This past Oc-
tober, however, after several weeks of rooting through my
archives (which represent months of download time!) and
reorganizing and updating data, I put together a fairly com-
prehensive database of the Z-System files released over the
major Z-Nodes during the past five years. Though still not
complete, I think it's a good beginning toward cataloging not
only all the great programs and utilities, but also the aliases,
patches, tips, et cetera, which continue to be generated in

support of Z-System. The database is being maintained in

and pending), originally published by s

Echelon in their Newsletter Z-NEWS Y

#602 (10/6/86). The list at that time Name Vers S ZSUS Issue Size Recs CRC Remarks
contained 130 programs, and only con- | por™ 120 0 v203 01/91 4Kk 29 7715 XrOR12.coM
sisted of the filenames and version

numbers for each program. Steven Figure1

Gold updated this list in April, 1988,
using the same format, and I began updating the file a few
months later, but expanded the format to include, on a single
line: the filename, latest version num-

dBase III+ on my ‘286 clone. As of this writing, it contains
over 700 entries. I've been transferring various pulls from the

ber, latest version of ZCPR supported,
date issued, size in kilobytes, size in
records, CRC, a remarks field, and,
more recently, the Z-SUS distribution
disk on which the program appears. In
short, ZFILES.LST has been used to
catalog the latest Z-System programs
and utilities and to provide some es-

XFOR 1.20

Figure 2

Z-System FOR utility for displaying ‘‘
Command line source file specification. Numerous configuration options
can be set with ZCNFG.

Author

" wn<mon

Z5US Siz Rec CRC Library/Size Issued

0 v203 4 29 7715 XFOR12

38 12/23/90 Gene Pizzetta
' delimited file catalogs.

’

sential statistics for each pertinent
.COM file. Figure 1 shows the header and a typical entry.
Note that an asterick (“*”) preceding the “Remarks” field

database to my CP/M-equipped (PCPI CP/M, NZCOM,
ZSDOS) Apple I+ via a null modem and doing final-editing
in WordStar 4.0.

Bill Tishey has been a ZCPR user since 1985, when he found the right combina-
tion of ZCPR2 and Microsoft’s Softcard CP/M for his three-year-old Apple II+.
After graduating to ZCPR30 and PCPI's Applicard CP/M, he did a “‘manual in-
stall”” of ZCPR3.3 (with help from a lot of friends!), and in late 1988 switched to
NZCOM and ZSDOS, all on the same vintage Apple II+. Bill is the author of the
Z3HELP system, a monthly-updated system of help files for Z-System programs, as
well as comprehensive listings of available Z-System software. Bill is the editor of
the Z-System Software Update Service and has compiled such offerings as the
Z3COM package and the Z-System Programmer’s Toolkit. Bill is a language analyst
for the federal government and frequents the Foreign Language Forum (FLEFO) on
Compuserve. He can be reached there (76320,22), on Genie (WATISHE), on Jay
Sage’s Z-Node #3 (617-965-7259) and by regular mail at 8335 Dubbs Drive, Sev-

ern, MD 21144.

The Computer Journai / #49

The first product of the Z-SUS data-
base was ZFILEVO01.LST, a “verbose”
version of ZFILESxx.LST (the original
list, now the ““brief”’ version, has been
renamed ZFILEBxx.LST and continues
to be updated monthly). ZFILEV01.LST
was in response to a number of re-
quests to include a brief description of
each of the program entries in ZFILES.
Now, those who have no idea of what
things like LSH, SNAP, TCSRC, OE, et
cetera, are, can get a reasonable idea of
what those programs do.
ZFILEVxx.LST will be updated “peri-
odically” (possibly monthly, but at

33



least two or three times a year). Its header and a typical entry
are shown in Figure 2.

Another purpose of ZFILEVxx.LST was to provide the
name of the original library in which a Z program was dis-
tributed. Since the .COM files often have different names
than the libraries in which they are distributed, this is very
important to users attempting to track down the programs.
The Z-System Software Update Service had also talked about
offering to compile custom disks for its customers. Providing
the size of the libraries made it easy for users to mix and
match programs to fill a particular disk format.

The database also allows for grouping files and programs
according to categories. While I've always maintained special
disks for word processing, programming, communications,
system, file, disk, print functions, et cetera, all files can now
be pulled together according to these and other categories.
Again, this has potential for use in compiling special pack-
ages for Z-SUS customers and has already helped signifi-
cantly in producing the Z-System Programmer’s Pack (see
announcements in this issue).

The database is also helping me to keep track of programs
for which .HLP files for my Z3HELP system (a subject for
another column!) have yet to be written. I'm a firm believer
in documentation. Taking the time to define the syntax, func-
tion, and usage, as well as the traps and limitations of a pro-
gram, makes it much more meaningful and useful to those
who would use it. For those who maintain a system with
many types of programs, HELP files are a good way to or-
ganize and make this information easily accessible.

Other ideas I've had for “lists” from the database include:

1) programs supporting the various versions of ZCPR

2) programs supporting CP/M+

3) programs supporting the various types of datestamp-
ing (DateStamper/ZSDOS/Z80DOS)

4) programs for which .CFG files have/have not been
written

Special packages can be compiled for: word processing,
system control, file manipulation, datestamping, alias appli-
cations, et cetera. Maybe the readers have other ideas. If so,

I'd like to hear of them. Now, let's get back to the XFOR
saga.

A “Spruced-Up”’ FOR

When [ released ZFILEVxx.LST this past November, Bob
Dean made an excellent suggestion to make the list “FOR"-
compatible by adding a “’----"" delimiter between each file
record. FOR.COM, in its various adaptations (FORZ, ZFORP,
etc), is a tool used on remote access computer systems
(RAS), originally created by Irv Hoff, to provide on-line de-
scriptions of available files. FOR is configured to read one or
more .FOR files which contain the actual descriptions and of-
ten reside in a private, protected area. Making ZFILEV
““FOR”'-compatible would allow users to scan ZFILEV on-
line to view the essential stats and descriptions of particular
programs in which they were interested.

Shortly after 1 released the modified ZFILEV, Chris
McEwen noted that he had patched his existing FOR utility
as well to read the file and was calling the resulting file DF
(Describe File). Users on his RAS now could also scan the list
for any number of things: function, program, author’s name,
date, etc. Chris was quick to notice that a modified FOR
might be useful for both RAS and personal use in scanning
all kinds of lists (including Ian Cotrill’s listing of Remote
RCP/M systems, RCPMmmyy.LST, which he updates
monthly). He presented to Gene Pizzetta the idea of “spruc-
ing up”’ FOR, and Gene took up the challenge. Almost imme-
diately, Gene was deluged with “suggestions.” He showed a
great deal of patience and understanding, however, in han-
dling suggestions from many sides and credit is due him for
keeping everyone’s interests at heart. The result is truly a
program of great utility for everyone. [ captured most of the
discussion thread and offer below a fairly accurate chronol-
ogy of events. What I've tried to show is how the comments
and suggestions (left column) greatly influenced the develop-
ment decisions (right column). Note that the comments have
been heavily edited to save space. They were actually offered
with much friendly discussion and not in the rather curt way
they may appear.

Vs 0.1 (Dec 2, 1990)

Armed with the suggestions below, Gene set to work and, within a few days (!) released version 0.1. Everyone agreed that it
was a good start. ZFOR, as it was initially named, was based on Carson Wilson’s FORZ 1.0 (8/5/87), which was a revised
disassembly of Irv Hoff’'s FOR.COM. As a standard Z tool, it responded to the “/ /" option on the command line, set the error
flag on a non-match, sported a quiet mode, and could be re-invoked with the GO command. It was also configurable with

ZCNFG.

Comments and Suggestions:

Consider the following syntax: FOR [ for-file-name [ search string | ] By allowing the text file to
be specified on the command line, a single FOR.COM could be used (via ARUNZ or other

Development:
ZFOR adds command-line source file
specification.

aliases) to work with various text files; one would not, as one does at present, need a separate

COM file patched for each text file.

The way to handle the problem of looking at files that are not in the public area (some RAS's
keep FOR files in a private area) is to provide an internal default path (settable with ZCNFG). If
no explicit DU: is given, the file would be fetched from the default directory.

I1f no DU or DIR spec is given, an interaily
configured default directory is used or, if not
configured, the currently logged directory.

Perhaps we could have a default filename and DU: for stand-alone use (those not using it in

conjunction with ARUNZ or aliases).

Yes, allow a default name and directory, but use that file only if the program is invoked with an
empty command line tail. Otherwise require that the first token be the file spec and any remaining

tokens be search words.

34

If no command tail is given, ZFOR defaults
to the configured internal filename.

The Computer Journal / #49



Vs 0.2 (Dec 8, 1990)

Some confusion resulted from users’ misunderstanding of the command line parsing. Many configured an internal filename
and DU and, using it in a stand-alone situation (not called from an alias), discovered they couldn’t look for a search string
without giving the filename. The result was some thinking that the new FOR didn’t provide string-searching! Gene reassured
everyone that this function had been in FOR from the beginning and that he had only made some very minor changes to it.
Besides, an alias such as “FOR zfor al5:for $*” would allow you to simply type “>FOR string”” to get the job done. Some,
however, continued to insist on the flexibility for stand-alone use.

With this version, Gene added a three-way screen paging option: paging, continuous scroll (using *$ to pause), or asking the
user whether to page or not. Leading spaces were also made significant. Only one space after the filespec is skipped; multiple

spaces are part of the first search string. This allows looking for *“ ren” and not getting “‘referRENce”.

Comments and Suggestions:

FOR is useless without string search, and ZFOR seems to accept a filename parameter OR a
string. it needs both.

What would you think of the following syntax (and new name): “"XFOR string”--use internal
filename and directory; “XFOR [D][U}:file string”--use specified file. The colon indicates that the
parameter is a filename.

Another name should be used rather than ZFOR as that name is used in ZMD.

You might delete the “----" between entries and highlight the entry as well. That might allow
more data on the screen while still keeping it separate.

The entries should be separated either by the “---- or a CR/LF. To remove both is too much.
For ZFILES, the display is a bit too cluttered.

| like the ZFILES header and would like to have a different one for the Nolan format (which
includes the DU, file size and date on the same line as the filename).

| kept getting the message that the buffer was overflowing, which ended the search.
Consider adding some additional abort characters more in line with Irv Hoff's FOR, specitically
K,k (non-control).

How about the ability to use file wildcarding in the search string?
1t would be nice to allow for multiple search words.

Vs 1.0 (15 Dec, 1990)

Development:

The syntax was changed so that, if the
first token contains a colon, it is a filename. If
either the DU/DIR spec or filename is
missing, they are filled in from the configured
defaults. This allows a string search to be
made if a DU is given without a filename.

The name was changed to XFOR to avoid
conflict with ZMD utilities.

The first fine of each entry is highlighted if
available from TCAP. Reverse video is used
for header line, if available.

Configurable to allow a blank line between
entries on screen.

Provides for an additional roll-your own
header in the form of a patch file which can be
overlaid into the program.

The entry buffer now handles single
entries up to 8k.

XFOR can be aborted at any time with “C,
K, *X, C, K, or X.

Search strings may include the following
special characters: “|” - separates multiple
search strings, “\” - matches the beginning of
a line, “?” - matches any single character,
allowing primitive wildcard searches.

In this, the distribution version, Gene changed the method of making leading spaces significant after discovering that the
syntax would not work from an alias (ARUNZ purges the leading spaces). Leading spaces are now ignored unless the match
string begins with “|”. “XFOR A1l: | REN”, thus, searches an internally configured file in A1 for an entry beginning with

“REN”".

Gene also added use of direct cursor addressing and clear-to-end-of-string if available and if a header is displayed. This

allows the header to be printed once and not flicker at the top of the screen.

Comments and Suggestions:
Suggest that TCAP use be optional and that the screen NOT be cleared (or at least be config-
urable).

Under the old TCAP, after the first few screen fulls of a ZFILES search,
the first line in each file description has the spacing to the end of the line in reverse video.

Vs 1.1 (18 Dec, 1990)

Development:

Variable screen overlap and clearing the
screen before each page are now configur-
able options.

Fixed problem causing highlighting not to
be terminated on some machines.

Some minor changes were made in this version, including addition of a CR, LF after the paging question and the use of

BOUT instead of COUT in the print loop so that tabs are expanded.

Comments and Suggestions:
It'd be nice to redirect output to a file, printer, or append it (ala CONCAT) to an existing file.

You might wish to add a way to turn on and off the highlighting of the first line of each entry.
Perhaps ability to choose no reverse can be built into the ZCNFG file.

The Computer Journal / #49

Development:

Added printer output and “+" command
line option (last token preceded by a space).

Made video attributes used for header and
first line of entry configurable options.

35



Vs 1.2 (23 Dec, 1990)

Just when everyone seemed adjusted to the new command line syntax, a suggestion was made to change it (where have I
heard that before?): the creation of an option field preceded by a slash. This idea was too good to ignore, since it would
simplify adding new options (as long as there was a good tokenizing routine) and avoid seemingly ““glued-on” enhancements

such as the “+” command for printer output.

Comments and Suggestions:

How about the following syntax: XFOR [[DIR]:[FILE] [/options] [strings] Some possible options
include: H-header, P-page, S-space between lines, L-print, N-no paging, etc.

Vs 1.37

Development:

Changed command-line syntax: an option
list, preceded by a slash can now be included
in the command line, just before the match
string. Options: H-display header, A-use
alternate header, S-double space between
entries, L-echo to printer, V-tum off all screen
attributes, P-use screen paging, N-no screen
paging.

Finally, there were some lingering suggestions to consider for future updates. Some of these were dismissed for obvious
reasons. The ability to read “crunched” file lists, for instance, had been suggested early on, since many of the file lists take up
much disk space (ZFILEVxx.LST is 120+k). The speed tradeoff in uncruching, however, may not be worth adding this option.

The ability to expand an ‘* to ‘??? in a search was also suggested but considered undesirable. Every special character
added to the search mode, of course, is another character which cannot be searched for, and these should be kept to an absolute
minimum. In addition, the XFOR search is looking for strings, not filenames. Entering ““xf*” would have exactly the same effect

as entering just “xf”.

Comments and Suggestions:

Development:

Consider using a CR to advance a screen, a SP to advance a line only and adding the ,.
standard command. Consider also backward scroll (iike found in V.COM), if supported by

extended TCAP.

Could you add “N"” as an abort option at the end of each page and change the prompt from
“More” to “More?”. This would accommodate users not familiar with the RAS conventions (*C,

*K, etc.).

How about a new command ("S") while waiting for “More” to bring up a prompt looking for a

new search string?

I hope this little, unfolding drama has not only informed
you about XFOR, but also given you a taste of program de-
velopment in the public domain (at least as it thrives among
the Z-Nodes). As Bob Dean at one point noted: “One thing

-about CP/M compatible public domain, it always has a gene-
alogy a mile long.” Indeed, XFOR’s parentage can now be
traced from Gene Pizzetta (XFOR), to Carson Wilson
(FORZ), to Irv Hoff (FOR), who evidently got the idea from

CompuServe. In addition, the DU, file size, and date fields
were added to the FOR-file format by Gene Nolan and Bob
Dean. As with most other CP/M and Z programs, credit is
also due the many users and testers who took time to offer
their suggestions and feedback. For XFOR, the major con-
tributors were: Chris McEwen, Jay Sage, Bob Dean, Howard
Schwartz, and yours truly.@®

continued from page 18
room temperature is within some hysteresis band of the de-
sired temperature, the circulator is cycled on for only one
minute out of ten. Should the room temperature fall below
the bottom limit point, then the circulator runs continuously.
This approach has been very effective.

Design Goals

The above description should give you a pretty clear pic-
ture of the kind of sophisticated control that a microproces-
sor based system can provide. I would like to close this in-
stallment by saying a few things about some important de-
sign constraints I imposed.

I required that the system operate for an extended period
of time without AC power. One would not want a power
glitch to erase the programmed schedule and leave the elec-
trical circuits and heating system uncontrolled thereafter. We
might, after all, be away on vacation. A sealed lead-acid bat-
tery, constantly charged from the AC, can operate the com-
plete system for at least 10 hours.

36

During the time that the power is off, some control opera-
tions cannot be performed because there is no electrical
power to the circuits being controlled. The system is smart
enough to know that AC power has failed, to keep track of
any state changes that should have been carried out, and to
carry them out as soon as power is restored.

A second requirement was that the system be highly
failsafe. A complete failure of the computer must still result
in a house whose temperature will stay within reasonable
bounds. Failure of the controller with the boiler turned on
must not lead to overheating and possible explosion of the
boiler. Failure of the controller at a time when the boiler is
turned off must not allow the house temperature to drop to
the point where water pipes might freeze. We will leave the
description of how this is done for next time.

Finally, there must be full manual backup control. Electri-
cal circuits must be switchable as usual with the computer
controller turned off or completely removed. Under the same
circumstances, the heating system must fall back to normal
manual control. This, too, will be described next time.@

The Computer Journal / #49



continued from page 20

and addresses are still entered as hex
quantities. In a third level of abstrac-
tion, numeric quantities and addresses
are allowed to be represented symboli-
cally, and the assembler takes over the
chore of keeping track of the actual ad-
dresses. Instead of getting buried in the
details of assembler operations, let’s
start over from the viewpoint of the
high level language, the next level of
abstraction.

From High Level to Assembler

High level languages deal with data
structures built up from numbers and
strings. Operations performed on such
data structures include arithmetic, logi-
cal, and I/O operations. To be sure, in-
tegers may be defined as a byte and
long integers as a word, but the empha-
sis is on the data type. CPU registers
appear in C, where some compilers al-
low specification of an integer as a reg-
ister variable. But the programmer does
not specify which register is to be used;
the compiler makes that choice. By con-
trast, assemblers deal only with regis-
ters and memory locations. Treatment
of data as one type or another is en-
tirely the choice of the programmer
since a data structure is ultimately de-
fined in terms of the operations which
may be sensibly performed on the col-
lection of data elements.

Assembly Language Programming:

Mnemonics and Opcodes

As in any new language, you must
become familiar with the actual in-
struction set. There are three commonly
used instruction sets, Intel, Zilog, and
Intel modified for Z80. The instruction
sets are implemented by assemblers.
For example, consider the instruction to
copy the contents of the C register into
the B register. The Intel mnemonic is
“MOV B,C”, the Zilog mnemonic is
“LD B,C”. Both result in the same byte
of code processed by the cpu: 41H.
MB80 is able to translate either Intel or
Zilog mnemonics. Other assemblers
use only one set. Learn the set that your
assembler uses by any means possible.
The 8080 has 244 instructions; the Z80
has about 3 times that number. Don’t
despair, however. Most of the instruc-
tions are variations on a basic set of
about 20 (depending on how you count
differences). This part of assembly lan-
guage is like learning your addition
tables - you just have to do it. As you
write programs, many of these instruc-

The Computer Journal / #49

tions and their effects will become sec-
ond nature. I don’t remember the de-
tails of all of them, even after many
years of AL programming. But I know
they exist and look them up when nec-
essary. If you own ZMAC, then you
know that there is a companion HELP
file named Z80.HLP. Written by Cam
Cotrill, Z80.HLP provides all the details
for every instruction used by the Z80
and Z180/HD64180 in quickly acces-
sible form. The same data is to be
found in tables included in references 1
and 2.

Assembler Instructions -- Pseudo-
Ops

The cpu instructions discussed
above are also referred to as opcodes,
and mnemonics. They are assembler in-
structions, because they instruct the as-
sembler to generate code for execution
by the cpu. There is another class of
assembler instructions, commonly
called pseudo-ops. This second class
does not directly produce executable
code. An important pseudo-op is the
DEFB statement, which defines the con-
tents of a memory location. Another is
the ORG statement, which defines the
address at which subsequent code is to
reside during execution. Other pseudo-
ops provide for conditional assembly
of code or other aspects of the opera-
tion of the assembler itself. The
MACRO pseudo-op provides a power-
ful facility for HLL-like features;
RMAC generates Z80 code with the
help of Z80.LIB, a library of macros.

Pseudo-ops have always been a part
of non-trivial assemblers. Each assem-
bler, however, has seen fit to give dif-
ferent names to the same function! The
DEFB function in M80 was named DB
in ASM, MAC, and RMAC. Another
synonym is DEFM. SLR assemblers rec-
ognize the synonyms that were being
used by most assemblers of its day.
ZMAC also recognizes and properly in-
terprets pseudo-op synonyms, includ-
ing those introduced by SLR. You will
become acquainted with the set of
pseudo-ops that your assembler uses.
Knowing about synonyms becomes
important when you attempt to read
source code from someone else whose
assembler is different.

Experienced AL programmers have
become accustomed to the differences
in source code languages, and work
comfortably with all the variations. Not
much different than High Level Lan-

continued page 28

8031 pController
Modules

NE W
Control-R 11

vV Industry Standard 8-bit 8031 CPU

V 128 bytes RAM / 8 K of EPROM

vV Socket for 8 Kbytes of Static RAM

v 11.0592 MHz Operation

v 14/16 bits of parallel I/O plus
access to address, data and control
signals on standard headers.

v MAX232 Serial /O (optional)

v +5 volt single supply operation

v Compact 3.50" x 4.5" size

vV Assembled & Tested, not a kit

$64.95 each

Control-R 1

vV Industry Standard 8-bit 8031 CPU
v 128 bytes RAM / 8K EPROM

v 11.0592 MHz Operation

vV 14/16 bits of parallel /O

v MAX232 Serial 1/O (optional)

V 45 volt single supply operation

v Compact 2.75" x 4.00" size

v Assembled & Tested, not a kit

$39.95 each

Options:
* MAX232 I.C. ($6.95¢a.)
* 6264 8K SRAM ($10.00¢a.)

Development Software:

« PseudoSam 51 Software ($50.00)
Level I MSDOS cross—assembler.
Assemble 8031 code with a PC.

* PscudoMax 51 Software ($100.00)
MSDOS cross—simulator. Test and
debug 8031 code on your PC!

Ordering Information:

Check or Money Orders accepted. All
orders add $3.00 S&H in Continental US
or $6.00 for Alaska, Hawaii and Canada.
Ilinois residents must add 6.25% tax.

Cottage Resources Corporation
Suite 3-672, 1405 Stevenson Drive
Springfield, Illinois 62703
(217) 529-7679

37



continued from page 16
ACTION ,X LDX ( get its action )
0 ,X JSR ( fire it! )

CURRENT_MCSB is a pointer to the currently active MCB. The linked list is used
from within an action to propel the interrupt through the list, firing each MCB’s
action. The constraint on this is that all MCB actions MUST fire before the next

INITIALIZE_MOTOR

CODE ADD_MOTOR_TO LIST ( mcb —- mcb ; uses X, D ;; Adds a new MCB to the )
( ; List of MCBs. )
ASSEMBLER
ANCHOR_MCB # LDX
NEXT_MOTOR ,X LDD
0 ,Y IDX
NEXT_MOTOR ,X STD

0 ,Y 1DD
. ANCHOR MCB # LDX
NEXT_MOTOR ,X STD

NEXT "~ JMP
END-CODE

CODE FILI,_MCB ( mcb action sensor timer port # —- mcb )
( ; uses X, D )
( ; Sets parameters in a new MCB )
ASSEMBLER
0A ,Y IDX
01 ,Y A LDA STEP_BIT ,X A STA INY INY ( Parameters are accessed )
( from the data stack: )
{ <number> ,Y )
( set to the appropriate )
( variable, then the )
( element ia poped off of )
( the stack. )
( In Max~-Forth 1 ,Y is the
{
(
(
(
(
(

The Stack Pointer is
incremented .. INY ..
last to remove an element)
and decremented first to )

)
1SB and 0 ,Y is the MSB. )
)
)

add an element. )
00 ,Y LDD >>PORT ,X STD INY INY
00 ,Y LDD TIMER ,X STD INY INY
00 ,Y LDD SENSOR ,X STD INY INY
00 ,Y LDD ACTION ,X STD INY INY
NEXT ~ JIMP
END-CODE

: ADD_MOTOR ( mcb action sensor timer port # —- )
FILI, MCB ADD_MOTOR_TO_LIST DROP ;

FIRST_MCB
>_WAIT &
>SENSOR_ACTION @
DELAY_TIME €

MCB )

Action Routine )
Sensor Routine )
Reload Timer count )

P A

8000 Addreess of Motor Port )

01 Address in Port of Motor )
ADD_MOTOR

: LEFT ( —- ; motor left )

DI >PORT CH

FIRST MCB STEP_BIT + C@
OR

>PORT C! EI

: RIGHT ( -- ; motor right )
DI >PORT C@
FIRST MCB STEP_BIT + C@
OFF XOR AND
>PORT C! EI

: RUN_MOTOR_1 ( -- ; spin it! )
OC1F IMSK1 C!
EI

interrupt hits. These states or routines
must be methodically factored. If this
system was to have 11 motors, the ac-
tion and sensor routines would have to
be very short! The list is completed
when the Anchor MCB's action fires its
RTI instruction. Once again, the list is a
circularly linked list. The list is closed--
the Anchor MCB points to the first
MCB--the Last MCB points to the An-
chor MCB.

Nuts and Bolts (And Tools!)

The code in listing 1. is the start up
code. It is loaded into the NMIS-0021
first. The postfix assembler is loaded
next. Finally the code in listing 2. is
loaded into the single board. The fol-
lowing is a review of the highlites
found in listing 2.

The motor interrupt handler uses
the 68HC11’s Output Compare Timer 1
(TOC1).The interrupt handler first ac-
knowledges the interrupt. This pre-
vents the firing of this interrupt upon
interrupt exit. If the interrupt is not ac-
knowledged, it will cause a recurring
interrupt. Next the current 68HC11
clock count is read from TCNT, added
with the TIMER_OFFSET variable, then
stuck into the TOC1 register.
TIMER_OFFSET in relation with
DELAY_TIME determine the step settle
time--TIMER_OFFSET is the fine tun-
ing variable while DELAY_TIME is the
coarse tuning variable. When TCNT
catches up to the value in TOC1 an-
other interrupt will fire. The first MCB
is accessed through the Anchor MCB
and the cycle continues.

In order to have things run
smoothly, “things” must be set up
properly.INITIALIZE_MOTOR con-
nects the Anchor MCB to itself, sets the
Anchor MCB’s action to the Last ac-
tion--the action that ends in an RTI. Fi-
nally the Interrupt vector for TOC1 is
set in EEPROM.

The last words in listing 2. are tools
used to construct a new MCB and con-
nect it into the list. Note how
FILL MCB uses the Forth stack to get
its parameters.

“Spin it Ont”

The NMIS 7040 board is described
quite well in New Micros documenta-
tion. I still referred to the Signetics lin-
ear manual for the actual connection of
the SAA1027 chip to a motor. The
SAA1027 is the heart of the ‘7040 board
which has four SAA1027’s built in.

continued page 39

The Computer Journal / #49



continued from page 6
and switches, or provides minimal noise filtering that will
be ineffectual in the face of an actual surge. Many users
would be as well served with a $3 hardware store MOV
protector that they discard and replace periodically, as they
would with an expensive protector using the MOVs, which
will also wear out.

Computer Reliability

. As computers spread into more and more critical areas of
industry and government, their reliability assumes greater
importance. No longer is computer failure, especially in net-
works, just a matter of running down to the computer store
for a new power supply or motherboard. In sophisticated
computer installations, many people may be unable to do
their normal work until their computers are restored. As In-
fonetics’ 1989 study of network failure costs showed, total
failure costs far exceed hardware expenses to repair equip-
ment, although these extra costs are often considered uncon-
trollable and buried in other overhead expense.

In addition to physical damage, the potential for costly
data errors and “no problem found” disruptions from pow-
erline disturbances makes computer power protection a poor
candidate for minor cost savings.

What Protection Do Computers Need?

Computers need powerline protection which does the fol-
lowing:

- Provides low let-through voltage (under 250 volts peak is
harmless).

- Does not use the safety ground as a surge sink and pre-
serves it for its role as voltage reference.

- Attenuates the fast rise times of all surges, to avoid stray
coupling into computer circuitry.

* Intercepts all surge frequencies, including the high fre-
quency internally generated surges.

- Does not convert normal mode surges into common
mode.

- Does not degrade in service, or if it does, at least is thor-
oughly safe in the event of thermal runaway and employs
reliable status indicator circuitry.

The Ideal Surge Protector

The ideal surge protector would disconnect the load from
the powerline for the duration of the surge, then reconnect it.
Since this is not possible with today’s switch technology, a
practical approach is to present a high impedance to the
surge and a low impedance to the power wave, coupled with
surge storage and frequency attenuation circuitry that will
remove the disruption and damage potential from the surge,
without using the critical reference ground as a surge sink,
but rather only neutral as the return circuit.

Solution

Power protection is important to the reliable operation of
computer networks. Once the critical role of the reference
ground is understood, and how it provides a “back door”
entry into the low-voltage logic circuitry of a computer, net-
work managers can make informed decisions of how to pro-
tect their equipment. Protection which meets the criteria out-
lined above without diverting surges to the reference ground
will reliably protect networks, while surge suppressers which
use the ground as a surge sink may well exacerbate computer

The Computer Journal / #49

problems. Computer power supplies are likely to be more
surge tolerant than low voltage logic circuitry, and the deci-
sion for network configurators should perhaps be reliable
protection or no protection, but not the risky middle course
of ground disrupting ordinary shunt suppressers.®

References

/Changes Considered for UL 1449”, LAN TIMES, July
1990, p.102.

*Martzloff, Francois D., ““Coupling, Propagation, and Side
Effects of Surges in an Industrial Building Wiring System”,
Conference Record of the IEEE-IAS 1988 Annual Meeting,
pp.1467-1475.

¥‘Beware Those Network Failures”’, The New York Times,
September 17, 1989.

*“Surge Protection Revisited”, LAN TIMES, May 1990,

.89.
P *'Power Line Protection--A Danger to Network
Datalines”, Power Quality, Premier Issue, 1990, p-104.

#‘Transformer Parasitic Capacitance Affects Switcher
Design”, PCIM, May 1990, p.56.

"‘Surge ‘Protectors’--Worse Than Useless?”’, Princeton
Maclntosh Users” Group Newsletter, June 1990.

¥Zero Surge Model ZS1800 Surge Eliminator--Product
Review and Report”, Vernon L. Chi, Department of Com-
puter Science, UNC Chapel Hill, July 1990.

#‘Adapting Adjustable Speed Drives to the Electrical
Environment”, Power Quality, Premier Issue, 1990, p.34

%Martzloff, Francois D. and Leedy, T. F., ““Selecting
Varistor Clamping Voltage: Lower Is Not Better!””, Zurich
EMC Symposium, April 1989.

MSAFE-ALERT Report of Fire Incident with MOV Surge
Protector, Government-Industry Data Exchange Program,
September 1988.

continued from page 38
This chip does the step commutation logic and drives the
motor. My motor was a disk drive stepper motor, used to
move the head to specific track locations. The NMIS 7040
board was jumpered to address 8000 hex on the 68HC11’s
address bus.

The motor control driver is built with the ADD_MOTOR
word. All is pretty explanatory: the 8000 is the address in
hex of the NMIS-7040 board, 01 is the actual motor address
in the NMIS-7040 board. RUN_MOTOR _1 will start the mo-
tor spinning. LEFT will spin it left, RIGHT will spin it right.
LEFT and RIGHT can be typed while the motor is spinning.
By modifying the DELAY_TIME and TIMER_OFFSET vari-
ables while the motor is spinning, you can change the speed
at which the motor spins. For now, use DI to stop the motor
from spinning. Later we will see a more precise way of stop-
ping the motor.

Until Next Time

A lot of information has been presented for one article.
Read through the code--the fundamental paradigm found
within can be applied to a plethora of applications in the
embedded controls field. In the next Article we will build
onto the MCB and control the motor’s behavior in terms of
its acceleration. If I can find a suitable and inexpensive en-
coder, we will incorporate that into our system. Until then
have fun with Forth.@

39



continued from page 2

Control Yourseif!

| was chatting with Jay Sage one evening last month. The
talk was on embedded controllers. [ wondered if there wasn't
a field of interest for CP/M users here. Actually, this was a
loaded question. | knew that Jay had built a complete home
control system out of an 8085 box some years ago. The good
news is that he took the bait. His first article describing this
system is in this issue. Meanwhile, I baited Rick Swenton in
Connecticut on X-10 modules. Not everyone is up to wiring
their house to the extent that Jay has. As it happens, there is
renewed message traffic on some of the systems around the
country about X-10. Think we should go for it?

Of course, the real action in embedded controllers is in
industrial applications. Frank Sergeant, the winner of the
Harris competition, debuts in this issue with his project. It is
a dedicated floppy disk alignment machine sufficiently small
to allow alignment of drives in the field. No more oscillo-
scopes, no more downtime while the drive goes to the shop.
Really a great article. Of course, it is not a trivial project and
we will be presenting it to you in a couple of installments.
Simply didn’t have space to fit it all in one issue. This article
shows the power of the Harris RTX chip and Forth in a real-
world application.

Readers will remember Art saying that he wanted to have
more time to spend on his own projects. That was one of the
reasons he decided to retire as the publisher of The Computer
Journal. Lucky Art! Zilog called to tell us of the new member
of the Z80 family. The Z181 seems to be one hot chip--built in
USART, timers, the works. Since this is right up Art’s alley, I
passed them on to him. Zilog sent him an application board
and he is busy in the workshop putting the new chip through
its paces. We will have his report later in the summer. Initial
reaction: great! Be on the lookout for more on this as it devel-
ops.

pMeanwhile, Matt Mercaldo continues with his series on
stepper control in this issue. Pay close attention to this series
of articles. Matt is leading us into robotics. In reading his
“author’s bio,” 1 fully expect to see “six legged mechanical
men” running around this place some time in late summer.
Fascinating. My wife, Ester, says she can't wait. She has al-
ready arranged lodging with her sister.

As the Z-World Turns

Of course, TCJ wouldn’t be TCJ without great articles on
Z-System. Jay tackles an excellent topic this time around:
modifying the NZCOM virtual BIOS. He puts out a general
challenge for more work in this area. Applications are nearly
endless, and whatever you can’t accomplish in the BIOS, you
can tackle with an 1OP. Lindsay Haisley of Austin, Texas is
hot of the trail with an upcoming article on that.

The real strength of the Z-System community is the way
people work together. Bill Tishey relates the dynamics of this
in his Z-Best column. [ have to admit to being an instigator,
but the central figure, Gene Pizzetta, accepted a challenge to
produce a new tool, accepted ideas from many people and
produced a fine program. It is so good, in fact, that it is now
standard issue on the Z-SUS catalog disk to provide an “on-
line’” search capability of the listings. As you may also know,
Bill is the editor of Z-SUS, so his interest in the development
process of new software comes naturally.

Al Hawley, the sysop of Z-Node Central in Los Angeles,
California, debuts in this issue with a series on assembly
language for the high level language programmer. This is a

40

twist on the topic as such people are already tuned to the
concept of algorithms but tend to think at a more abstract
level. It seems to me that Al’s series could encourage some to
get off the fence and try their hands at programming at the
assembly level. This issue is a great start.

| want to take a moment to mention a publication that also
serves the CP/M and Z-System community. Lee Bradley
publishes Eight Bits & Change in Newington, Connecticut. He
had some very nice things to say about TCJ in a recent edi-
tion. To be right about it, I need to admit that I have been
enjoying Lee’s work since the early issues of Pieces of Eight,
the predecessor of the current publication. EB&C is less tech-
nical, and less formally produced than this publication. I find
it fun to sit down in the evenings and browse through an
issue. You might, also. Drop Lee a note at 24 E. Cedar Street,
Newington CT 06111. Subscriptions are $15 a year in the US.

David McGlone is publishing the Z-Lefter on a regular
basis now. Unfortunately, I don’t have any more information
on it. | am told he does an excellent job.

Well, friends, that is about all the ramblings [ have for you
this issue. Again, the great articles keep coming in, though
there is always room for more. We should all take pride in
our collective achievements as seen in these pages. I will
leave you now to enjoy the journal. Before you do, however,
I want to take a brief moment away from the topic of com-
puters and talk about someone very special to me.

A Very Special Person

Several readers noticed a fish symbol in the masthead of
the last issue. The fish was a secret signal between early
Christians during the time of the Roman persecutions. And
yes, | am a Christian. But this is not a religious journal and I
had a deeper reason for placing it there. Bear with me as |
want to tell you about it.

One of the members of our Quaker Meeting for Worship
founded the Central New Jersey chapter of FISH some
twenty years ago. FISH feeds the poor, hungry and homeless
and Anita Hoynes spent her life serving the less fortunate.
When | found a moment, I would lend a hand but I never
seemed to have enough time to give Anita. This last Christ-
mas season found her organization swamped with a great
many more needy families due to the deepening recession
and with fewer people to help. Hers is not a small project:
Anita’s chapter feeds thousands of families. And so it was
particularly hard for me to deny her call for help. The de-
mands of putting out my first issue of this journal were such
that I just could not be there for Anita. I was bothered greatly
and as a small token, I placed the fish in the masthead.

When Anita saw her first copy of TCJ, she was thrilled. It
pleased her to see a friend doing well. I never heard a harsh
word from this woman, though I felt I had let her down. But
you should have seen her eyes when she found the fish! She
knew immediately why it was there. For a brief moment, I
thought [ saw a glimmer of a tear in her eyes. My signal was
received.

This story takes a tragic turn here. Last week, Anita was
violently murdered by one of the very people she spent her
life serving. The loss of any life diminishes us, but losing this
person has been very hard on me. We pray that we may gain
our share of our Creator’s Wisdom. In watching her, I found
myself praying for a share of hers.

Thank you for bearing with me on this. It really does
mean a lot to me. And thank you, Anita, for showing the
way we were meant to live our lives on this earth. Know that
our love and faith is with you.@

The Computer Journal / #49



continued from page 44
veloping products like these are not for the garage type de-
veloper. Now when it comes to problems add an extra 20 to
40 thousand bucks for test gear. LANs require LAN sniffers
to see what is actually happening. We found our interface
program was combining two packets together if reset during
a previous operation. Without the sniffer I doubt I would
have ever found the problem.

From an installation standpoint, LAN security is a major
problem. When I installed a Novel system several years ago,
the major problem was getting the new users to understand
the importance of security. After that step it was figuring out
how to set up the structure which can become a real manage-
ment problem for some small organizations. The original
group was 3 people with plans to add more later. My feeling
after the project was too far along to change, the LAN was
over kill by many times. It cost everybody lots of time,
money, and added an extra layer that new or beginner users
have to learn. For three people the $25 network would most
likely be the best, and after they become larger and higher
skilled, only then add a LAN option.

The last or latest problem is using true blue products. We
have a model 70 that has been locking up for no apparent
reason. We have had previous problems with the 80 and are
starting to think they are related. It seems IBM has a habit of
selling systems with old problems, bad ROMs, or boards that
have been recalled. The latest problems are ROM BIOS re-
lated and might be affecting the 70, 80, and 90 models. They
lock up after doing disk accesses and need a special work
around driver. It is not so much a problem that the IBM
products have bugs, all products have some amount of prob-
lems. The main difference is finding out about it, we found
out by buying one. The industry has an attitude that anything
IBM does is ok and problem free. The truth is far from that.

Forth Day
A few of us went to FORTH DAY 1990 in the San Fran-
cisco bay area last month. Heard some good speakers for

. such a low key affair. About 30 to 40 people showed up with

about 10 to 12 speakers. Chuck Moore was there and talked
about his latest cpu project. He keeps making them faster
and smaller. Has a whole CAD system in less than 64K of
memory. The real interest for us and many others was the
availability of EFORTH. That is a Forth especially set up for
use in embedded systems. Dr. Ting had a hand in it's pro-
duction as well as selling books about it.

You can download the files from the GEnie Forth confer-
ence as well as many other places. I am in the process of
porting it to the 68K system at work to check out the use of it
instead of our old debuggers. It has 29 to 31 words that
require redoing in assembler for whichever CPU type you
are using. All the other words are high level and would not
need changing. The documents with it suggest about a
month to port it over, but it looks like mine will be ready to
try in one or two days of work. What wili take long to do is
setting up the code for ROM use, where it will require closer
checking of RAM and ROM usage. They have a sample 8051
version to show how simple it can be. The code runs on a PC
and they use standard MASM 5.1 for both the PC and 8051
version. The idea is to use define statements for other CPUs
since only 31 words maximum need coding. That coding can
also be rather simple so I would agree that for some CPU
type just use defines. The most interesting concept stated was
that metacompling was dead. It proved far too complex for
most people to learn and just turned users away. Eforth is
assembler based and I am glad to see more people realizing

The Computer Journal / #49

that assembler is the best way to get systems up, and not
metacompling (metacompling uses a Forth system to gener-
ate a new Forth system).

Overall our opinion of the Forth Day was rather low key.
The people seemed tired, and not with over work. Many of
us Forth people get tired of being put down by C people
when we can prove how much faster and better the code use
is when in Forth. One bright spot was the talk about how
SUN Computer Systems is using Forth in every one of their
systems. Pretty soon there will be more embedded Forth sys-
tems out there than any other language. The flip side of that
is that most SUN user have little if any knowledge of that
fact. Once the system boots and works properly they have
little contact with Forth. For Sun it has been a good move
that has saved money and provided lots of extra benefits. For
the Forth community it will probably help in the long run,
but for now just try and get a job doing Forth programming,
Employers want C and more C programmers, nothing else
will do (mainly because they are cheap and plentiful).

Time to Go

I guess I have said enough for now. Hopefully I have got
some of you to rethink whether or not new technology is
always better. [ still remember attending a talk by Schu-
macker of “SMALL 1S BEAUTIFUL” fame. Lately I have
been associating some of his ideas against the direction and
type of products the computer industry is turning out. I have
also found out that my best running and trouble free pro-
grams are those which are small and simple (also usually in
Forth!). The bigger and more complex they get it seems the
worse they work. Sounds like small is beautiful after all.@

Cross-Assemblers . oussssoo
SImUIatOI'S as low as $100.00
Cross-Disassemblers . iowss s10000
DeveIoPer Packages

as low as $200.00(a $50.00 Savings
A New Project

Our line of macro Cross-assemblers are easy to use and full featured,
including conditional assembly and uniimited include files.

Get It To Market--FAST

Don't wait until the hardware is finished to debug your software. Our
Simulators can test your program logic before the hardware is built.

No Source!
Aminor glitch has shown up in the firmware, and you can't find the original
source program. Qur line of disassembiers can help you re-create the
original assembly language source.

Set To Go
Buy our developer package and the next time your boss says "Get to work.",
you'll be ready for anything.

Quality Solutions

PseudoCorp has been providing quality solutions for microprocessor
problems since 1985,

BROAD RANGE OF SUPPORT
e Currently we support the following microprocessor families (with
more in development):
Intel 8048 RCA 1802,05 Intel 8051 Intel 8056

Motorola 6800 Motorola 6801 Motorola 68HC11 Motorola 6805
Hitachi 6301 Motorola 6809 MOS Tech 6502 WDC 65C02
Rockwell 65C02 Intel 8080,85 Zilog Z80

NSC 800
Hitachi HD64180  Motoroia 68000,8 Motorola 68010  Intel 80C196
e Al products require an IBM PC or compatibie.

So What Are You Waiting For? Call us:
PseudoCorp

Professional Develogment Products Group
716 Thimble Shoals Blvd, Suite E
Newport News, VA 23606

(804) 873-1947 FAX: (804)873-2154

41



The Computer Journal

Back Issues

Sales limited to supplies in stock.

e

\
Special Close Out Sale on these
back issues only.

3'or more, $1.50 each postpaid in
the US: or $3.00 postpaid airmail
‘outside US.

lnsue Number 1:

»RS-232 Interface Part 1
+Telecomputing with the Apple ||

« Beginner's Column: Getting Started

= Build an “Epram”

lenue Number 2:

- File Transfer Programs for CP/M
<RS-232 interface Part 2

= Build Hardware Prirt Spooler Part 1

+ Review of Fioppy Disk Formats
+Bending Morse Cade with an Apple
- Reginner's Column: Basic Concepts and
Formuias

Ipaue Number 3.

< Add. an 8087 Math Chip-to Your Dual
Processor Board

« Build an A/ Converter fot Apple ||
~Madems for Mictos

-"The CP/M Operating System

< Build Hardware Print Spocier; Part 2

lasue Number 4;
- Optronics, Pat 1! Detecting,  Generating
and Using Light in Electronics

= Multi-User: An Introduction
< Making - the. CP/M 'User Function. More

Usgetul
< Biild Hardware Print Spooler: Part 3
* Beginner’s Column: Power Supply Design

-jaaue Number 8.

~Bufld VIC-20 EPROM Programmer

7 Multi-User: CP/Net

+.Buiid. ' High " Resolution’ S-100" Graphics
Board, Part 3

- Gystem integration, Part 3: CP/M 3.0

+ Linear Optimization with Micros

\ -/

lasue Number 19:

- Parallel Interface for Apple || Game Port

- The Hacker's MAC: A lLetter from Lee
Feisenstein

- 5-100 Graphics Screen Dump

- The LS-100 Disk Simulator Kit

- BASE: Part Six

« Interfacing Tips & Troubles: Communicat-
ing with Telephone Tone Control, Part 1
lseue Number 19:

- Using the Extensibility of Forth

- Extended CBIOS

+ A $500 Superbrain Computer

- BASE: Part 7

- Interfacing Tips & Troubles: Communicat-
ing with Teiephone Tone Control, Part 2

< Multitasking & Windows with CP/M: A
Review of MTBASIC

lasue Number 20

- Designing an 8035 SBC

- Using Apple Graphics from CP/M: Turbo
Pascal Controls Appie Graphics

- Soldering & Other Strange Tales

- Buikd an S-100 Floppy Disk Controller.
WD2797 Controller for CP/M 68K

lssue Number 210
- Extending Turbo Pascal: Customize with
Procedures & Functions
- Unsoldering: The Arcane Art

Analog Data Acquisiton & Control:
Connecting Your Computer to the Real
World
- Programming the 8035 SBC

izsye Number 22;

- NEW-DOS: Write Your Own Operating
System

Variability in the BDS C Standard Library

- The SCSI Interface: Introductory Column

- Using Turbo Pascal ISAM Files
- The Ampro Little Board Column
Issue Number 23:
C Column: Flow Control & Program
Structure
The Z Column: Getting Started with
Directories & User Areas
- The SCS! Interface; introduction to SCSI
NEW-DOS: The Conscle Command
Processor
- Editing the CP/M Operating System
- INDEXER: Turbo Pascal Program to Create
an Index
- The Ampro Little Board Column
lesue Numbper 24;
- Selecting & Building a System
The SCSI Interface: SCSI
Protocol
- Introduction to Assemble Code for CP/M
- The C Column: Software Text Fitters
- Ampro 186 Column: Instaling MS-DOS
Software
- The Z-Column
- NEW-DOS: The CCP Internal Commands
- ZTime-1: A Real Time Clock for the Ampro
Z-80 Little Board
lasue Number 23;
- Repairing & Modifying Printed Circuits
- Z-Com vs. Hacker Version of Z-System
- Exploring Single Linked Lists in C
- Adding Serial Port to Ampro LB
- Building a SCS| Adapter
- NEW-DOS: CCP internal Commands
- Ampro 186 Networking with SuperDUO
- ZSIG Column

lasue Number 26:
- Bus Systems: Selecting a System Bus

- Using the SB180 Real Time Clock
- The SCSI Interface: Software for the SCSI

Command

Adapter
- Inside Ampro Computers
NEW-DOS: The CCP Commands
(continued)
- ZSIG Corner
- Affordable C Compilers

Concurrent  Multitasking: A Review of
DoubleDOS
lesue Number 27;
- 68000 TinyGiant: Hawthorne's Low Cost
16-bit SBC and Operating System

The At of Source Code Generation:
Disassembling Z-80 Software
- Feedback Control System Analysis: Using
Root Locus Analysis & Feedback Loop
Compensation

The C Column: A Graphics Primitive
Package
- The Hitachi HD64180: New Life for 8-bit
Systems
- ZSIG Corner; Command Line Generators
and Aliases
- A Tutor Program in Forth: Writing a Forth
Tutor in Forth
- Disk Parameters: Modifying the CP/M Disk
Parameter Block for Foreign Disk Formats

isaue Number 26:

- Starting Your Own BBS

- Build an A/D Converter for the Ampro Littie
Board

- HD84180: Setting the Wait States & RAM
Refresh using PRT & DMA

- Using SCS| for Real Time Control

- Open Letter to STD Bus Manufacturers

+ Patching Turbo Pascal

- Choosing a Language for Machine Control
lasye Number 29;

- Better Software Filter Design

- MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 1

- Using the Hitachi hd64180: Embedded
Processor Design

- 68000: Why use a new OS and the 880007
- Detecting the 8087 Math Chip

- Fioppy Disk Track Structure

- The ZCPR3 Corner

lssue Number 30:

- Double Density Floppy Controller

- ZCPR3 IOP for the Ampro Little Board
- 3200 Hackers’ Language

- MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 2

- Non-Preemptive Multitasking

- Software Timers for the 68000

- Lilliput Z-Node

- The ZCPR3 Corner

- The CP/M Corner

issue Number 31;

- Using SCSH for Generalized |/O

- Communicating with Floppy Disks: Disk
Parameters & their variations

- XBIOS: A Replacement BIOS for the S8180
- K-OS ONE and the SAGE: Demystifying

Operating Systems
- Remote: Designing a Remote System
Program
- The ZCPR3 Corner: ARUNZ Documentation
Issue Number 32:

Language Development: Automatic
Generation of Parsers for Interactive

Systems
- Designing Operating Systems: A ROM
based OS for the 281
- Advanced CP/M: Boosting Performance
- Systematic Elimination of MS-DOS Files:
Part 1, Deleting Root Directories & an In-
Depth Look at the FCB

WordStar 4.0 on Generic MS-DOS
Systems: Patching for ASCli Terminal Based
Systems
- K-OS ONE and the SAGE: System Layout
and Hardware Configuration
- The ZCPR3 Corner: NZCOM and ZCPR34
lssue Number 33:
- Data File Conversion: Writing a Filter to
Convert Foreign File Formats
- Advanced CP/M: ZCPR3PLUS & How to
Write Seff Relocating Code
- DataBase: The First in a Series on Data
Bases and Information Processing
- SCS! for the S-100 Bus: Another Example
of SCSI's Versatility
- A Mouse on any Hardware: Impiementing
the Mouse on a ZBO System
- Systematic Elimination of MS-DOS Files:
Part 2, Subdirectories & Extended DOS
Services
- ZCPR3 Comer: ARUNZ Shells & Patching
WordStar 4.0

iasue Number 34;

- Developing a File Encryption System.

- Database: A continuation of the data base
primer series.

- A Simple Multitasking
Designing an embedded
multitasking executive.

- ZCPR3: Relocatable code, PRL files,
ZGCPRR34, and Type 4 programs.

- New Microcontrolters Have Smarts: Chips
with BASIC or Forth in ROM are easy to
program.

- Advanced CP/M: Operating system
extensions to BDOS and BIOS, RSXs for
CPM 2.2

- Macintosh Data File Conversion in Turbo
Pascal.

- The Computer Corner

lssue Number 35;

- All. This & Modula-2: A Pascal-like
alternative with scope and parameter
passing.

- A Short Course in Source Code
Generation: Disassembling 8088 software to
produce modifiable assem. source code.

- Real Computing: The NS32032.

- 8-100: EPROM Burner project for S-100
hardware hackers.

- Advanced CP/M: An up-to-date DOS, plus
details on file structure and formats.

- REL-Style Assembly Language for CP/M
and Z-System. Part 1: Selecting your
assembiler, linker and debugger.

- The Computer Corner

issue Number 36;

- Information Engineering: Introduction.

- Modula-2: A list of reference books.

- Temperature Measurement & Controk
Agricuttural com puter application.

- ZCPR3 Corner: Z-Nodes, Z-Plan, Amstrand
computer, and ZFILE.

- Real Computing: NS32032 hardware for
experimenter, CPUs in series, software
options.

- SPRINT: A review.

- REL-Style Assembly Language for CP/M
& ZSystems, part 2.

- Advanced CP/M:
programming.

- The Computer Cornef.
Issue Numper 37,

- C Pointers, Arrays & Structures Made
Easier: Part 1, Pointers.

- ZCPR3 Corner: Z-Nodes, patching for
NZCOM, ZFILER.

- Information Engineering: Basic Concepts:
fields, field definition, cliert worksheets.

- Shells: Using ZCPR3 named shell
variables to store date variables.

- Resident Programs: A detailed look at
TSRs & how they can lead to chacs.

- Advanced CP/M: Raw and cooked conscle
/0.

- Real Computing: The NS 32000.

- ZSDOS: Anatomy of an Operating System:
Part 1.

- The Computer Corner.

lasue Number 36:
- C Math: Handling Dollars and Cents With

Executive:
controller

Environmental

C.

- Advanced CP/M: Batch Processing and a
New ZEX.

- C Pointers, Arrays & Structures Made
Easier: Part 2, Arrays.

- The Z-System Corner: Shells and ZEX,
new Z-Node Central, system security under
Z-Systems.

- Information Engineering: The portabie
Information Age.

- Computer Aided Publishing: Introduction to
publishing and Desk Top Publishing.

- Shells: ZEX and hard disk backups.

- Real Computing: The National
Semiconductor NS320XX.

- ZSDOS: Anatomy of an Operating System,
Part 2.

The Computer Journal / #49



|asye Number 39;

- Programming for Performance: Assembly
Language techniques.

- Computer Aided Publishing: The Hewlett
Packard LaserJet.

- The  Z-System Corner:
enhancements with NZCOM.

- Generating LaserJet Fonts: A review of
Digi-Fonts.

- Advanced CP/M: Making old programs Z-
System aware.

- C Pointers, Arrays & Structures Made
Easier: Part 3: Structures.

- Shelis: Using ARUNZ alias with ZCAL.

- Real Computing: The National
Semiconductor NS320XX.

- The Computer Corner.

lasue Number 40;

- Programming the Laseret: Using the
escape codes.

- Beginning Forth Column: Introduction.

- Advanced Forth Column: Variant Records
and Modules.

- UNKPRL: Generating the bit maps for PRL
files from a REL file.

- WordTech's dBXL: Writing your
custom designed business program.

- Advanced CP/M: ZEX 5.0-The machine
and the language.

- Programming for Performance: Assembly
language techniques.

- Programming Input/Output With C:

System

own

Keyboard and screen functions.

- The Z-System Corner: Remote access
systems and BDS C.

- Real Computing: The NS320XX

- The Computer Corner.

Iseye Number 41;

- Forth Column: ADTs, Object Oriented

Concepts.

- tmproving the Ampro LB: Overcoming the
88Mb hard drive limit.

- How to add Data Structures in Forth

- Advanced CP/M: CP/M is hacker's haven,

The Computer Journal

Back Issues

Sales limited to supplies in stock.

Issue Number 42;

- Dynamic Memory Allocation: Allocating
memory at runtime with examples in Forth.

- Using BYE with NZCOM.

- C and the MS-DOS Screen Character
Attributes.

- Forth Column: Lists and object oriented
Forth,

- The Z-System Corner: Genie, BDS Z and
2Z-System Fundamentals.

- 68705 Embedded Controller Application:
An example of a single-chip microcontroller
application.

- Advanced CP/M: PiuPerfect Writer and
using BDS C with REL files.

- Real Computing: The NS 32000.

- The Computer Corner

lasue Number 43;

- Standardize Your Floppy Disk Drives.

- A New History Sheil for ZSystem.

- Heath's HDOS, Then and Now.

- The ZSystem Corner: Software update
service, and customizing NZCOM.

- Graphics Programming With C: Graphics
routines for the IBM PC, and the Turbo C
graphics library.

- Lazy Evaluation: End the evaluation as
soon as the result is known.

- 8-100: There's stilt life in the old bus.

- Advanced CP/M: Passing parameters, and

lssue Number 44;

+ Animation with Turbo C Part 1: The Basic
Tools.

- Multitasking in Forth: New Micros F68FC11
and Max Forth.

- Mysteries of PC Floppy Disks Revealed:
FM, MFM, and the twisted cable.

- DosDisk: MS-DOS disk format emulator for
CP/M.

- Advanced CP/M: ZMATE and using lookup
and dispatch for passing parameters.

- Real Computing: The NS32000.

- Forth Column: Handling Strings.

- Z-System Comer: MEX and telecommuni-
cations.

* The Computer Corner

lssue Number 45;

- Embedded Systems for the Tenderfoot:
Getting started with the 8031.

- The Z-System Corner: Using scripts with
MEX.

+ The Z-System and Turbo Pascal: Patching
TURBO.COM to access the Z-System.

- Embedded Applications: Designing a 280
RS-232 communications gateway, part 1.

- Advanced CP/M: String searches and
tuning Jetfind.

< Animation with Turbo C: Part 2, screen
interactions.

- Real Computing: The NS32000.

lssue Number 46;
- Build a Long Distance Printer Driver.
> Using the B8031's built-in UART for seriat
communications.
- Foundational Modules in Modula 2.
- The Z-System Corner: Patching The Word
Plus spell checker, and the ZMATE macro
text editor.
- Animation with Turbo C: Text in the
graphics mode.
- 7280 Communications Gateway:
Prototyping, Counter/Timers, and using the
280 CTC.
lasue Number 47;

Controlling Stepper Motors with the
68HC11F
- Z-System Corner: ZMATE Macro Language
- Using 8031 Interrupts
- T-1: What it is & Why You Need to Know
- ZCPR3 & Modula, Too
- Tips on Using LCDs: Interfacing to the
68HC705
- Real Computing: Debugging, NS32 Multi-
tasking & Distributed Systems
- Long Distance Printer Driver: correction
- ROBO-50G 80
- The Computer Corner

Issue Number 4§;
- Fast Math Using Logarithms

\

and Z-System Command Scheduler. complex error recovery. + The Computer Corner. .
- The Z-System Corner. Extended Multie - Real Computing: The NS32000. ot Assom et
Command Line, and aliases. . * The Computer Comer. -Adding & Bermoulli Drive to a CPM
- Programming disk and printer functions Computer (Building a SCS! Interface)
" ONKPAL: Making RSXes easy - Review of BOS "2
- SCOPY: Copying a series of unrelated ;:a[?TCch\mI\Eg Macros
files. Y . i g
.| e Computer Comer. Tfeevyjzmuggngré:a!chmg MEX-Plus and
- Z-Best Software
- The Computer Corner
r U.s. Foreign Foreign Total N
(Surface) (Airmail)
Subscriptions Name
1year (6 issues) $18.00 $24.00 $38.00
2 years (12 issues) $32.00 $44.00 $72.00 Address
Back Issues
18 thru #43 $3.50 ea. $5.00 ea.
6 or more $3.00 ea. $4.50 ea.
#44 and up $4.50 ea. $6.00 ea. Payment is accepted by check or money order. Checks
6 or more $4.00 ea. $5.50 ea. must be in US funds, drawn on a US bank. Personal
Issue #s checks within the US are welcome.
ordered
Subscription Total
Back Issues Total The Computer Journal
Total Enclosed P.O. Box 12, S. Plainfield, NJ 07080-0012
ol Enclose Phone (908) 755-6186 J

The Computer Journal / #49

43



The Computer Corner

By Bill Kibler

“WEell it is move time for me. Just moved to a larger place,
but my computer space is actually smaller. Looks like it will
take some time to get set up again, but we are now on a dead
end road with considerable peace and quite as well as room
to spread out later.

Went to a computer swap last week and sold mostly disk
drives and cabinets. Seems most shoppers are not interested
in parts of systems any more, just PC based plug-in units.
That also agrees with my part time teaching in electronics.
The college is planning on changing the slant of the program
to a more black box approach.

Enrollment in pure electronic courses has fallen rather
sharply, so the department is changing from an electronic
tech approach to a computer or industrial computer mainte-

No longer is it necessary to be able to trouble
shoot to the component level. Most systems these
days can not be repaired to the component level so

teaching that operation is proving pointless.

nance approach. The students will spend their time doing
mostly black box style repairs. No longer is it necessary to be
able to trouble shoot to the component level. Most systems
these days can not be repaired to the component level so
teaching that operation is proving pointless.

This point was brought home when I went to start the last
semesters teaching. My classroom had been taken over by the
computer department. I found myself stuck in a regular
classroom and the two electronic labs were now only one.
The electronics department has two instructors, while the
computer group has gone from 4 to 6 and may add one more
next fall. Computer science is not slowing down around
here.

Hardware Talk

While at a recent family get together, I found that comput-
ers can creep into the conversation as well. [ was asked sev-
eral times about what current level or model one should get.
Personally, I still am not too happy with the PC clones but
they are the cheapest still. I prefer the 68000 based units for
their better software, but alas the PC market has more overall
appeal for the beginner and college bound student. One of
my brothers has two college bound students and they are
finding out how many of the instructors are using and re-
quiring the students to use PC based programs.

The cost and availability of PC clones is so great that de-
spite their draw backs they are by far the best buy. One of the
people at work attended the computer show in Las Vegas,
where he saw several sharp items. We still think the new

4

Atari machines are the thing to have, as they can run Mac
and DOS as well as the Atari ST software. The way they do
this is using co-processor boards, the PC being a 386 plug in.
The Macintosh is using the real Macintosh ROMs. So the ST
becomes simply I/O for the other processes.

For me personally, I have been thinking more and more
along the lines of multiple processor systems. I do not have
the room to have several systems for each of the many differ-
ent areas | may have to deal with. My wife is a teacher and
wants to run Apple I programs and Macintosh graphic stuff
(she is an art teacher as well as a graphic artist). My teaching
is both Macintosh and PC clone. I work on clones running
68K co-processors talking to Tandem mainframes. My real
interest is in embedded systems which could be anything
from 6805 to RTX2000s. I currently have hardware to support
all but the Apple and Macs, and I plan to get a adapter card
for my Atari ST to cover them. As you can guess, that is a lot
of physical systems, especially when you throw in the older
CP/M S-100 boxes. Takes up lots of room.

What I am thinking about is retooling the old $-100 prod-
ucts (or some other bus) to be able to put together one system
that would run all the processors 1 am working with. I can
currently run the Xerox CP/M programs on a PC clone and
some special co-processors. There are several programs and
adapters for the Atari ST to run Macintosh, CP/M, 8 bit
Atari, PC/DOS, and many more. Apple is getting into the
picture with a cheaper machine to run Apple II and Macin-
tosh programs. The way things are going, 1 will be able to
buy what I want before I could adapt and make such a sys-
tem for myself. I sure hope so!

Problems

Work has been dragging along these days. Lots of little
problems keep appearing to slow things down. We run co-
processors in IBM PC based machines. Our latest project is
changing our serial data path to LAN based usage. We ended
up using a LAN sniffer the other day for one problem. The
type and nature of test equipment is getting more and more
complex everyday. I can’t stress the importance of not going
to higher tech solutions if there is some other way around the
problem. To me, LANs are a good example of why [ believe
in that statement.

First lets talk cost of development. We found that testing
our program required at least 32 systems be on line before
certain types of problems occurred. The cost of each system,
even at OEM prices is staggering. The PC’s are PS2 386's,
plus LAN cards, our co-processor board, and added mem-
ory. Our cost is over $7,000 each, and to do tests properly
you need over 32 units or over $200,000 of capital outlay. De

continued page 41

The Computer Journal / #49



Plu*Perfect Systems == World-Class Software

BACKGIOUNUET i c...vueueerrirceccranaeneoceensessesenessessse s e ssesasessssesecssssssnsnssssessssssssssmmees e seneeesen e $75

Task-switching ZCPR34. Run 2 programs, cut/paste screen data. Use calculator, notepad, screendump, directory
in background. CP/M 2.2 only. Upgrade licensed version for $20.

Z-SYSTBIM sttt et es st sas s ssens s s e sssaeas s s e esees s s ems e e e mem e s emem et en s $69.95
The renowned Z-System command processor (ZCPR v 3.4) and companion utilities. Dynamically change memory
use. Installs automatically
Order Z3PLUS for CP/M Plus, or NZ-COM for CP/M 2.2.

ZMATE ettt sa s sse s ses st st e memes et ee s et s e e e e e et seese $50
New Z-System version of renowned PMATE macro editor with split-screen mode for two-window viewing of one or
more files. Extremely powerful and versatile macro capability lets you automate repetitive or complex editing
tasks, making it the ultimate programmer's editor. Macros can be saved for reuse and also assigned to keys.
Editing keys can be reconfigured for personal style. Supports drive/user and named-directory file references.
Auto-installs on Z systems. Z-80 only. Supplied with user manual and sample macro fiies.

PIUPEIECT WIEEE ...ttt eeeeeaeasese e e ees e e e et $35
Powerful text and program editor with EMACS-style features. Edit files up to 200K. Use up to 8 files at one time,
with split-screen view. Short, text-oriented commands for fast touch-typing: move and delete by character, word,
sentence, paragraph, plus rapid insert/delete/copy and search. Built-in file directory, disk change, space on disk.
New release of our original upgrade to Perfect Writer 1.20, now for all Z80 computers. On-disk documentation
only.

ZSDOS........... Ceeesesesesesessnrennannsnnrennsranatranrastaerrarbaortteaeaeeeesnnssnnnnnnnnsnnns $75, for ZRDOS users just $60

State-of-the-art operating system. Built-in file DateStamping. Fast hard-disk warmboots. Menu-guided installation.
Enhanced time and date utilities. CP/M 2.2 only.

DOSDISK ...t imeeecceerrectete et s ses s eeee s ssae s esene sesesm e s e e et $30 - $45

Use MS-DOS disks without copying files. Subdirectories too. Kaypro w/TurboRom, Kaypro w/KayPLUS, MD3,
MD11, Xerox 820-1 w/Plus 2, ON!, C128 w/1571 - $30. SB180 w/XBIOS -- $35. Kit -- $45. Kit requires assembly
language expertise and BIOS source code.

MULTICPY .c..oeetsettiststsints e sesesssssassss s s ssenst s sn et s s asessssns e ssesessmsses s e ee e eees e $45
Fast format and copy 90+ 5.25" disk formats. Use disks in foreign formats. Includes DosDisk. Requires Kaypro
w/TurboRom.

JBIFINA ettt st s e s s mene e s e e e et e et $50
Fastest possible text search, even in LBR, squeezed, crunched files. Also output to file or printer. Regular
expressions.

To order: Specify product, operating system, computer, 5 Plu*Perfect Systems
1/4" disk format. Enclose check, adding $3 shipping ($5 410 23rd St.
foreign) + 6.5% tax in CA. Enclose invoice if upgrading Santa Monica, CA 90402
BGii or ZRDOS. (213)-393-6105 (eves.)

BackGrounder il ©, DosDisk ©, Z3PLUS ©, PluPerfect Writer ©, JetFind © Copyright 1986-88 by Bridger Mitchell.



SAGE MICROSYSTEMS EAST

Selling & Supporting the Best in 8-Bit Software

e Automatic, Dynamic, Universal Z-Systems

— Z3PLUS: Z-System for CP/M-Plus computers ($70)
— NZCOM: Z-System for CP/M-2.2 computers ($70)
— ZCPR34 Source Code: if you need to customize ($50)

e ZSUS: Z-System Software Update Service, public-domain software distribution service
(write for a flyer with full information)

e Plu*Perfect Systems

— Backgrounder ii: CP/M-2.2 multitasker (375)
ZSDOS/ZDDOS: date-stamping DOS (875, $60 for ZRDOS owners)
ZSDOS Programmer’s Manual ($10)

— DosDisk: MS-DOS disk-format emulator, supports subdirectories and
date stamps (330 standard, $35 XBIOS BSX, $45 kit)

JetFind: super fast, extemely flexible text file scanner ($50)

e ZMATE: macro text editor / customizable wordprocessor (350)
e PCED — the closest thing to ARUNZ and LSH (and more) for MS-DOS (850)
e BDS C — including special Z-System version ($90)

e Turbo Pascal — with new loose-leaf manual (360)

SLR Systems (The Ultimate Assembly Language Tools)
— 780 assemblers using Zilog (Z80ASM), Hitachi (SLR180), or Intel (SLRMAC)

mnemonics
— linker: SLRNK
— TPA-based ($50 each) or virtual-memory (special: $160 each)

e ZMAC — Al Hawley’s Z-System macro assembler with linker and librarian
($50 disk, $70 with printed manual)

e NightOwl (advanced telecommunications, CP/M and MS-DOS versions)

— MEX-Plus: automated modem operation with scripts (360)

— MEX-Pack: remote operation, terminal emulation ($100)

Next-day shipping of most products with modem download and support available. Order
by phone, mail, or modem. Shipping and handling $3 per order (USA). Check, VISA, or

MasterCard. Specify exact disk format.

Sage Microsystems East
1435 Centre St., Newton Centre, MA 02159-2469
Voice: 617-965-3552 (9:00am ~ 11:30pm)
Modem: 617-965-7259 (pw=DDT) (MABOS on PC-Pursuit)




